Suppr超能文献

弱选择与蛋白质进化。

Weak selection and protein evolution.

机构信息

Division of Evolutionary Genetics, Department of Population Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.

出版信息

Genetics. 2012 Sep;192(1):15-31. doi: 10.1534/genetics.112.140178.

Abstract

The "nearly neutral" theory of molecular evolution proposes that many features of genomes arise from the interaction of three weak evolutionary forces: mutation, genetic drift, and natural selection acting at its limit of efficacy. Such forces generally have little impact on allele frequencies within populations from generation to generation but can have substantial effects on long-term evolution. The evolutionary dynamics of weakly selected mutations are highly sensitive to population size, and near neutrality was initially proposed as an adjustment to the neutral theory to account for general patterns in available protein and DNA variation data. Here, we review the motivation for the nearly neutral theory, discuss the structure of the model and its predictions, and evaluate current empirical support for interactions among weak evolutionary forces in protein evolution. Near neutrality may be a prevalent mode of evolution across a range of functional categories of mutations and taxa. However, multiple evolutionary mechanisms (including adaptive evolution, linked selection, changes in fitness-effect distributions, and weak selection) can often explain the same patterns of genome variation. Strong parameter sensitivity remains a limitation of the nearly neutral model, and we discuss concave fitness functions as a plausible underlying basis for weak selection.

摘要

分子进化的“近中性”理论提出,基因组的许多特征源于三种弱进化力量的相互作用:突变、遗传漂变和处于效能极限的自然选择。这些力量通常对种群内的等位基因频率没有什么影响,但对长期进化却有重大影响。弱选择突变的进化动态对种群大小高度敏感,近中性最初被提议作为对中性理论的一种调整,以解释现有蛋白质和 DNA 变异数据的一般模式。在这里,我们回顾了近中性理论的动机,讨论了模型的结构及其预测,并评估了当前对蛋白质进化中弱进化力量相互作用的实证支持。近中性可能是一系列功能类别的突变和分类群中普遍存在的进化模式。然而,多种进化机制(包括适应性进化、连锁选择、适应值分布的变化以及弱选择)通常可以解释相同的基因组变异模式。强参数敏感性仍然是近中性模型的一个局限性,我们讨论了凹适应值函数作为弱选择的一个合理基础。

相似文献

1
Weak selection and protein evolution.
Genetics. 2012 Sep;192(1):15-31. doi: 10.1534/genetics.112.140178.
2
A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation.
Genetics. 2012 Apr;190(4):1477-89. doi: 10.1534/genetics.111.137117. Epub 2012 Jan 31.
4
Fluctuations in fitness distributions and the effects of weak linked selection on sequence evolution.
Theor Popul Biol. 2013 May;85:86-102. doi: 10.1016/j.tpb.2013.01.005. Epub 2013 Jan 18.
6
Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome.
PLoS Genet. 2011 Oct;7(10):e1002326. doi: 10.1371/journal.pgen.1002326. Epub 2011 Oct 13.
8
Endosymbiont evolution: predictions from theory and surprises from genomes.
Ann N Y Acad Sci. 2015 Dec;1360(1):16-35. doi: 10.1111/nyas.12740. Epub 2015 Apr 9.
9
Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.
PLoS Genet. 2015 Jul 15;11(7):e1005392. doi: 10.1371/journal.pgen.1005392. eCollection 2015 Jul.
10
The dynamics of adaptation on correlated fitness landscapes.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18638-43. doi: 10.1073/pnas.0905497106. Epub 2009 Oct 26.

引用本文的文献

6
Digital Image Processing to Detect Adaptive Evolution.
Mol Biol Evol. 2024 Dec 6;41(12). doi: 10.1093/molbev/msae242.
7
Quantifying microbial guilds.
ISME Commun. 2024 Mar 27;4(1):ycae042. doi: 10.1093/ismeco/ycae042. eCollection 2024 Jan.
8
Long-lasting redundant expression in GnRH neurons enabled apparent switching of paralog usage during evolution.
iScience. 2024 Feb 22;27(3):109304. doi: 10.1016/j.isci.2024.109304. eCollection 2024 Mar 15.
9
Evolutionary origin of germline pathogenic variants in human DNA mismatch repair genes.
Hum Genomics. 2024 Jan 29;18(1):5. doi: 10.1186/s40246-024-00573-0.
10
Double migration of the endangered Tricyrtis formosana (Liliaceae) in Japan.
Sci Rep. 2024 Jan 10;14(1):957. doi: 10.1038/s41598-024-51431-x.

本文引用的文献

1
THE MOLECULAR CLOCK AND THE RELATIONSHIP BETWEEN POPULATION SIZE AND GENERATION TIME.
Evolution. 1993 Apr;47(2):688-690. doi: 10.1111/j.1558-5646.1993.tb02124.x.
2
Evolutionary rate of cistrons and DNA divergence.
J Mol Evol. 1972 Jun;1(2):150-7. doi: 10.1007/BF01659161.
3
The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes.
Genome Biol Evol. 2012;4(5):658-67. doi: 10.1093/gbe/evs027. Epub 2012 Mar 21.
4
Genome evolution in outcrossing versus selfing versus asexual species.
Methods Mol Biol. 2012;855:311-35. doi: 10.1007/978-1-61779-582-4_11.
5
Evidence for widespread positive and purifying selection across the European rabbit (Oryctolagus cuniculus) genome.
Mol Biol Evol. 2012 Jul;29(7):1837-49. doi: 10.1093/molbev/mss025. Epub 2012 Jan 31.
6
The Drosophila melanogaster Genetic Reference Panel.
Nature. 2012 Feb 8;482(7384):173-8. doi: 10.1038/nature10811.
7
Extensive X-linked adaptive evolution in central chimpanzees.
Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):2054-9. doi: 10.1073/pnas.1106877109. Epub 2012 Jan 23.
8
Molecular evolution in nonrecombining regions of the Drosophila melanogaster genome.
Genome Biol Evol. 2012;4(3):278-88. doi: 10.1093/gbe/evs010. Epub 2012 Jan 23.
9
The abundance of deleterious polymorphisms in humans.
Genetics. 2012 Apr;190(4):1579-83. doi: 10.1534/genetics.111.137893. Epub 2012 Jan 20.
10
Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide.
PLoS One. 2011;6(12):e28905. doi: 10.1371/journal.pone.0028905. Epub 2011 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验