Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
Circ Res. 2012 Dec 7;111(12):1539-50. doi: 10.1161/CIRCRESAHA.112.279109. Epub 2012 Sep 10.
The density of native (preexisting) collaterals varies widely and is a significant determinant of variation in severity of stroke, myocardial infarction, and peripheral artery disease. However, little is known about mechanisms responsible for formation of the collateral circulation in healthy tissues.
We previously found that variation in vascular endothelial growth factor (VEGF) expression causes differences in collateral density of newborn and adult mice. Herein, we sought to determine mechanisms of collaterogenesis in the embryo and the role of VEGF in this process.
Pial collaterals begin forming between embryonic day 13.5 and 14.5 as sprout-like extensions from arterioles of existing cerebral artery trees. Global VEGF-A overexpressing mice (Vegf(hi/+)) formed more, and Vegf(lo/+) formed fewer, collaterals during embryogenesis, in association with differences in vascular patterning. Conditional global reduction of Vegf or Flk1 only during collaterogenesis significantly reduced collateral formation, but now without affecting vascular patterning, and the effects remained in adulthood. Endothelial-specific Vegf reduction had no effect on collaterogenesis. Endothelial-specific reduction of a disintegrin-and-metalloprotease-domain-10 (Adam10) and inhibition of γ-secretase increased collateral formation, consistent with their roles in VEGF-induced Notch1 activation and suppression of prosprouting signals. Endothelial-specific knockdown of Adam17 reduced collateral formation, consistent with its roles in endothelial cell migration and embryonic vascular stabilization, but not in activation of ligand-bound Notch1. These effects also remained in adulthood.
Formation of pial collaterals occurs during a narrow developmental window via a sprouting angiogenesis-like mechanism, requires paracrine VEGF stimulation of fetal liver kinase 1-Notch signaling, and adult collateral number is dependent on embryonic collaterogenesis.
固有(先前存在的)侧支的密度差异很大,是中风、心肌梗死和外周动脉疾病严重程度变化的重要决定因素。然而,对于健康组织中侧支循环形成的机制知之甚少。
我们之前发现血管内皮生长因子(VEGF)表达的差异导致新生和成年小鼠侧支密度的差异。在此,我们试图确定胚胎中侧支生成的机制以及 VEGF 在这一过程中的作用。
软脑膜侧支从现有的脑动脉树中的小动脉发出芽状延伸,于胚胎第 13.5 天至 14.5 天开始形成。全局性 VEGF-A 过表达小鼠(Vegf(hi/+)) 在胚胎发生过程中形成了更多的侧支,而 Vegf(lo/+) 形成的侧支则更少,这与血管模式的差异有关。在侧支生成过程中,条件性全局降低 Vegf 或 Flk1 水平显著减少了侧支的形成,但现在不影响血管模式,而且这种影响在成年后仍然存在。内皮细胞特异性的 VEGF 减少对侧支生成没有影响。内皮细胞特异性减少解整合素和金属蛋白酶域 10(Adam10)和抑制γ-分泌酶增加了侧支的形成,这与它们在 VEGF 诱导的 Notch1 激活和抑制促芽信号中的作用一致。内皮细胞特异性敲低 Adam17 减少了侧支的形成,这与它在血管内皮细胞迁移和胚胎血管稳定中的作用一致,但与配体结合的 Notch1 的激活无关。这些影响在成年后仍然存在。
软脑膜侧支的形成发生在一个狭窄的发育窗口内,通过一种类似于血管生成的发芽机制,需要旁分泌 VEGF 刺激胎儿肝激酶 1-Notch 信号,并且成年后的侧支数量取决于胚胎侧支生成。