Suppr超能文献

血管内皮生长因子-A决定天然侧支血管的形成,并在缺血状态下调节侧支血管的生长。

Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia.

作者信息

Clayton Jason A, Chalothorn Dan, Faber James E

机构信息

Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, USA.

出版信息

Circ Res. 2008 Oct 24;103(9):1027-36. doi: 10.1161/CIRCRESAHA.108.181115. Epub 2008 Sep 18.

Abstract

The density of native (preexisting) collaterals and their capacity to enlarge into large conduit arteries in ischemia (arteriogenesis) are major determinants of the severity of tissue injury in occlusive disease. Mechanisms directing arteriogenesis remain unclear. Moreover, nothing is known about how native collaterals form in healthy tissue. Evidence suggests vascular endothelial growth factor (VEGF), which is important in embryonic vascular patterning and ischemic angiogenesis, may contribute to native collateral formation and arteriogenesis. Therefore, we examined mice heterozygous for VEGF receptor-1 (VEGFR-1(+/-)), VEGF receptor-2 (VEGFR-2(+/-)), and overexpressing (VEGF(hi/+)) and underexpressing VEGF-A (VEGF(lo/+)). Recovery from hindlimb ischemia was followed for 21 days after femoral artery ligation. All statements below are P<0.05. Compared to wild-type mice, VEGFR-2(+/-) showed similar: ischemic scores, recovery of hindlimb perfusion, pericollateral leukocytes, collateral enlargement, and angiogenesis. In contrast, VEGFR-1(+/-) showed impaired: perfusion recovery, pericollateral leukocytes, collateral enlargement, worse ischemic scores, and comparable angiogenesis. Compared to wild-type mice, VEGF(lo/+) had 2-fold lower perfusion immediately after ligation (suggesting fewer native collaterals which was confirmed by angiography) and blunted recovery of perfusion. VEGF(hi/+) mice had 3-fold greater perfusion immediately after ligation, more native collaterals, and improved recovery of perfusion. These differences were confirmed in the cerebral pial cortical circulation where, compared to VEGF(hi/+) mice, VEGF(lo/+) formed fewer collaterals during the perinatal period when adult density was established, and had 2-fold larger infarctions after middle cerebral artery ligation. Our findings indicate VEGF and VEGFR-1 are determinants of arteriogenesis. Moreover, we describe the first signaling molecule, VEGF-A, that specifies formation of native collaterals in healthy tissues.

摘要

局部(预先存在)侧支血管的密度及其在缺血状态下(动脉生成)扩张为大的传导动脉的能力是闭塞性疾病中组织损伤严重程度的主要决定因素。指导动脉生成的机制仍不清楚。此外,关于健康组织中局部侧支血管如何形成也一无所知。有证据表明,血管内皮生长因子(VEGF)在胚胎血管形成和缺血性血管生成中起重要作用,可能有助于局部侧支血管的形成和动脉生成。因此,我们研究了血管内皮生长因子受体-1(VEGFR-1(+/-))、血管内皮生长因子受体-2(VEGFR-2(+/-))杂合子小鼠,以及过表达(VEGF(hi/+))和低表达VEGF-A(VEGF(lo/+))的小鼠。在股动脉结扎后,对后肢缺血的恢复情况进行了21天的跟踪观察。以下所有陈述的P值均<0.05。与野生型小鼠相比,VEGFR-2(+/-)表现出相似的:缺血评分、后肢灌注恢复、侧支周围白细胞、侧支血管扩张和血管生成。相比之下,VEGFR-1(+/-)表现出受损的:灌注恢复、侧支周围白细胞、侧支血管扩张、更差的缺血评分以及相当的血管生成。与野生型小鼠相比,VEGF(lo/+)在结扎后立即的灌注降低了2倍(表明局部侧支血管较少,血管造影证实了这一点),且灌注恢复减弱。VEGF(hi/+)小鼠在结扎后立即的灌注增加了3倍,有更多的局部侧支血管,且灌注恢复改善。这些差异在软脑膜皮质循环中得到了证实,与VEGF(hi/+)小鼠相比,VEGF(lo/+)在成年密度建立的围产期形成的侧支血管较少,且在大脑中动脉结扎后梗死面积增大了2倍。我们的研究结果表明VEGF和VEGFR-1是动脉生成的决定因素。此外,我们描述了第一个在健康组织中决定局部侧支血管形成的信号分子VEGF-A。

相似文献

1
Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia.
Circ Res. 2008 Oct 24;103(9):1027-36. doi: 10.1161/CIRCRESAHA.108.181115. Epub 2008 Sep 18.
2
Vascular endothelial growth factor and the collateral circulation: the story continues.
Circ Res. 2008 Oct 24;103(9):905-6. doi: 10.1161/01.RES.0000338258.90706.2c.
3
P2Y2 nucleotide receptor mediates arteriogenesis in a murine model of hind limb ischemia.
J Vasc Surg. 2016 Jan;63(1):216-25. doi: 10.1016/j.jvs.2014.06.112. Epub 2014 Jul 31.
4
Mechanisms of Amplified Arteriogenesis in Collateral Artery Segments Exposed to Reversed Flow Direction.
Arterioscler Thromb Vasc Biol. 2015 Nov;35(11):2354-65. doi: 10.1161/ATVBAHA.115.305775. Epub 2015 Sep 3.
5
Tumor suppressor protein p53 negatively regulates ischemia-induced angiogenesis and arteriogenesis.
J Vasc Surg. 2018 Dec;68(6S):222S-233S.e1. doi: 10.1016/j.jvs.2018.02.055. Epub 2018 Aug 17.
6
Chloride intracellular channel-4 is a determinant of native collateral formation in skeletal muscle and brain.
Circ Res. 2009 Jul 2;105(1):89-98. doi: 10.1161/CIRCRESAHA.109.197145. Epub 2009 May 28.
8
Chloride intracellular channel 4 is required for maturation of the cerebral collateral circulation.
Am J Physiol Heart Circ Physiol. 2015 Oct;309(7):H1141-50. doi: 10.1152/ajpheart.00451.2015. Epub 2015 Aug 14.
10
Denervation in Femoral Artery-Ligated Hindlimbs Diminishes Ischemic Recovery Primarily via Impaired Arteriogenesis.
PLoS One. 2016 May 13;11(5):e0154941. doi: 10.1371/journal.pone.0154941. eCollection 2016.

引用本文的文献

2
PEDF and Its Role in Metabolic Disease, Angiogenesis, Cardiovascular Disease, and Diabetes.
Biomedicines. 2025 Jul 21;13(7):1780. doi: 10.3390/biomedicines13071780.
4
FGF-23 as a Biomarker for Carotid Plaque Vulnerability: A Systematic Review.
Med Sci (Basel). 2025 Mar 10;13(1):27. doi: 10.3390/medsci13010027.
5
Collateral blood vessels in stroke and ischemic disease: Formation, physiology, rarefaction, remodeling.
J Cereb Blood Flow Metab. 2025 Mar 12:271678X251322378. doi: 10.1177/0271678X251322378.
6
Synthetic Antiangiogenic Vascular Endothelial Growth Factor-A Splice Variant Revascularizes Ischemic Muscle in Peripheral Artery Disease.
J Am Heart Assoc. 2024 Oct 15;13(20):e034304. doi: 10.1161/JAHA.124.034304. Epub 2024 Oct 11.
7
Development of pial collaterals by extension of pre-existing artery tips.
Cell Rep. 2024 Oct 22;43(10):114771. doi: 10.1016/j.celrep.2024.114771. Epub 2024 Sep 25.
8
Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke.
Transl Stroke Res. 2024 Sep 3. doi: 10.1007/s12975-024-01291-4.
9
Emerging strategies for nerve repair and regeneration in ischemic stroke: neural stem cell therapy.
Neural Regen Res. 2024 Nov 1;19(11):2430-2443. doi: 10.4103/1673-5374.391313. Epub 2023 Dec 21.
10
Pathological angiogenesis: mechanisms and therapeutic strategies.
Angiogenesis. 2023 Aug;26(3):313-347. doi: 10.1007/s10456-023-09876-7. Epub 2023 Apr 15.

本文引用的文献

1
2
Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation.
Mol Biol Cell. 2008 Mar;19(3):994-1006. doi: 10.1091/mbc.e07-09-0856. Epub 2007 Dec 19.
3
The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes.
Arterioscler Thromb Vasc Biol. 2008 Feb;28(2):322-8. doi: 10.1161/ATVBAHA.107.158022. Epub 2007 Dec 13.
4
Arteriogenesis: basic mechanisms and therapeutic stimulation.
Eur J Clin Invest. 2007 Oct;37(10):755-66. doi: 10.1111/j.1365-2362.2007.01861.x. Epub 2007 Aug 30.
5
Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains.
Physiol Genomics. 2007 Jul 18;30(2):179-91. doi: 10.1152/physiolgenomics.00047.2007. Epub 2007 Apr 10.
6
Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia.
FASEB J. 2006 Dec;20(14):2657-9. doi: 10.1096/fj.06-6568fje. Epub 2006 Nov 9.
7
Humoral and cellular factors responsible for coronary collateral formation.
Am J Cardiol. 2006 Nov 1;98(9):1194-7. doi: 10.1016/j.amjcard.2006.05.046. Epub 2006 Aug 31.
9
Arteriogenesis versus angiogenesis: similarities and differences.
J Cell Mol Med. 2006 Jan-Mar;10(1):45-55. doi: 10.1111/j.1582-4934.2006.tb00290.x.
10
VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo.
Circ Res. 2006 Apr 14;98(7):947-53. doi: 10.1161/01.RES.0000216974.75994.da. Epub 2006 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验