Suppr超能文献

从药物发现到淋巴瘤的生物标志物驱动临床试验。

From drug discovery to biomarker-driven clinical trials in lymphoma.

机构信息

Department of Lymphoma/Myeloma, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.

出版信息

Nat Rev Clin Oncol. 2012 Nov;9(11):643-53. doi: 10.1038/nrclinonc.2012.156. Epub 2012 Sep 11.

Abstract

Over the past three decades, the pathological classification of lymphoma has substantially improved. The early Rappaport classification included a handful of subtypes that did not reflect the cell of origin and, not surprisingly, resulted in diagnostic inaccuracies. The WHO currently classifies lymphoma into 30 major distinctive types. While this classification improved the accuracy and consistency of the histological diagnosis of lymphoma, it had little impact on advancing drug development or improving the cure rate of this disease. One reason for this lack of improvement is that recent developments in cancer genomics show these histopathological subtypes to be heterogeneous. Basing treatment decisions on histopathological subtypes is inefficient as it groups different underlying molecular characteristics into one category. Such a strategy exposes many patients to potentially toxic drugs without providing benefits. The recent approval of two new cancer drugs with companion diagnostics to allow selection and treatment of patients with melanoma and non-small-cell lung cancer has raised hope that a similar approach may also expedite successful drug development in lymphoma. We review the current status of biomarker development in lymphoma, and discuss novel biomarker-directed clinical trial designs for lymphoma.

摘要

在过去的三十年中,淋巴瘤的病理学分类有了实质性的改进。早期的 Rappaport 分类包括少数几种不能反映起源细胞的亚型,毫不奇怪,这导致了诊断不准确。目前,世界卫生组织(WHO)将淋巴瘤分为 30 种主要独特类型。虽然这种分类提高了淋巴瘤组织学诊断的准确性和一致性,但对推进药物开发或提高这种疾病的治愈率影响甚微。造成这种缺乏改善的原因之一是,癌症基因组学的最新发展表明这些组织病理学亚型存在异质性。基于组织病理学亚型做出治疗决策效率低下,因为它将不同的潜在分子特征归入一个类别。这种策略使许多患者面临潜在的毒性药物,而没有带来益处。最近批准了两种新的癌症药物,并附有伴随诊断,以允许选择和治疗黑色素瘤和非小细胞肺癌患者,这让人们希望类似的方法也可能加速淋巴瘤的成功药物开发。我们回顾了淋巴瘤生物标志物开发的现状,并讨论了针对淋巴瘤的新型生物标志物指导的临床试验设计。

相似文献

1
From drug discovery to biomarker-driven clinical trials in lymphoma.从药物发现到淋巴瘤的生物标志物驱动临床试验。
Nat Rev Clin Oncol. 2012 Nov;9(11):643-53. doi: 10.1038/nrclinonc.2012.156. Epub 2012 Sep 11.
3
Precision therapy for lymphoma--current state and future directions.淋巴瘤精准治疗——现状与未来方向。
Nat Rev Clin Oncol. 2014 Oct;11(10):585-96. doi: 10.1038/nrclinonc.2014.137. Epub 2014 Aug 19.
4
Beyond chemotherapy: new agents for targeted treatment of lymphoma.超越化疗:用于淋巴瘤靶向治疗的新型药物。
Nat Rev Clin Oncol. 2011 Feb;8(2):85-96. doi: 10.1038/nrclinonc.2010.189. Epub 2010 Dec 14.
5
Developing new drugs for the treatment of lymphoma.开发用于治疗淋巴瘤的新药。
Eur J Haematol Suppl. 2005 Jul(66):150-8. doi: 10.1111/j.1600-0609.2005.00470.x.
7
The landscape of new drugs in lymphoma.淋巴瘤新药的发展概况
Nat Rev Clin Oncol. 2017 Jun;14(6):335-346. doi: 10.1038/nrclinonc.2016.205. Epub 2016 Dec 29.
10
Impact of the biomarker enrichment strategy in drug development.生物标志物富集策略在药物研发中的影响。
Expert Rev Mol Diagn. 2020 Jun;20(6):611-618. doi: 10.1080/14737159.2020.1711734. Epub 2020 Jan 7.

引用本文的文献

2
Precision Medicine in Lymphoma by Innovative Instrumental Platforms.创新仪器平台助力淋巴瘤的精准医学
Front Oncol. 2019 Dec 17;9:1417. doi: 10.3389/fonc.2019.01417. eCollection 2019.
4
Clinical applications of genome studies.基因组研究的临床应用。
Hematol Oncol. 2017 Jun;35 Suppl 1(Suppl 1):67-69. doi: 10.1002/hon.2403.
7
On chip analysis of CNS lymphoma in cerebrospinal fluid.脑脊液中中枢神经系统淋巴瘤的芯片分析
Theranostics. 2015 Apr 17;5(8):796-804. doi: 10.7150/thno.11220. eCollection 2015.
8
Precision therapy for lymphoma--current state and future directions.淋巴瘤精准治疗——现状与未来方向。
Nat Rev Clin Oncol. 2014 Oct;11(10):585-96. doi: 10.1038/nrclinonc.2014.137. Epub 2014 Aug 19.

本文引用的文献

3
Prepping omics for the clinic.为临床应用准备组学技术。
J Natl Cancer Inst. 2012 May 16;104(10):727-8. doi: 10.1093/jnci/djs248. Epub 2012 Apr 27.
9
New paradigms in translational science research in cancer biomarkers.癌症生物标志物转化科学研究的新范例。
Transl Res. 2012 Apr;159(4):343-53. doi: 10.1016/j.trsl.2012.01.015. Epub 2012 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验