Suppr超能文献

女性受试者高位膝外翻在下落式著地时并不会产生更高的膝关节内翻:双平面荧光透视研究。

High knee valgus in female subjects does not yield higher knee translations during drop landings: a biplane fluoroscopic study.

机构信息

School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA.

出版信息

J Orthop Res. 2013 Feb;31(2):257-67. doi: 10.1002/jor.22217. Epub 2012 Sep 11.

Abstract

The goal of this study was to determine the effects of peak knee valgus angle and peak knee abductor moment on the anterior, medial, and lateral tibial translations (ATT, MTT, LTT) in the "at risk" female knee during drop landing. Fifteen female subjects performed drop landings from 40 cm. Three-dimension knee motion was simultaneously recorded using a high speed, biplane fluoroscopy system, and a video-based motion analysis system. Valgus knee angles and knee abduction moments were stratified into low, intermediate, and high groups and peak ATT, MTT, and LTT were compared between these groups with ANOVA (α = 0.05). Significant differences were observed between stratified groups in peak knee valgus angle (p < 0.0001) and peak knee abduction moment (p < 0.0001). However, no corresponding differences in peak ATT, LTT, and MTT between groups exhibiting low to high-peak knee valgus angles (ATT: p = 0.80; LTT: p = 0.25; MTT: p = 0.72); or, in peak ATT (p = 0.61), LTT (p = 0.26) and MTT (p = 0.96) translations when stratified according to low to high knee abduction moments, were found. We conclude that the healthy female knee is tightly regulated with regard to translations even when motion analysis derived knee valgus angles and abduction moments are high.

摘要

本研究旨在确定在“高危”女性膝关节进行落地跳时,峰值膝关节外翻角度和峰值膝关节外展力矩对胫骨前向、内侧和外侧平移(ATT、MTT、LTT)的影响。15 名女性受试者从 40cm 高处进行落地跳。使用高速双平面荧光透视系统和基于视频的运动分析系统同时记录三维膝关节运动。将外翻角度和外展力矩分为低、中、高组,并使用方差分析(α=0.05)比较这些组之间的峰值 ATT、MTT 和 LTT。在峰值膝关节外翻角度(p<0.0001)和峰值膝关节外展力矩(p<0.0001)方面,分层组之间存在显著差异。然而,在表现出低至高峰值膝关节外翻角度的组之间(ATT:p=0.80;LTT:p=0.25;MTT:p=0.72),或在根据低至高膝关节外展力矩分层时,峰值 ATT(p=0.61)、LTT(p=0.26)和 MTT(p=0.96)的翻译之间,没有发现相应的差异。我们得出结论,即使在分析得出的膝关节外翻角度和外展力矩较高的情况下,健康女性的膝关节在平移方面也受到严格的控制。

相似文献

2
Knee kinematic profiles during drop landings: a biplane fluoroscopy study.
Med Sci Sports Exerc. 2011 Mar;43(3):533-41. doi: 10.1249/MSS.0b013e3181f1e491.
3
Relationship of knee shear force and extensor moment on knee translations in females performing drop landings: a biplane fluoroscopy study.
Clin Biomech (Bristol). 2011 Dec;26(10):1019-24. doi: 10.1016/j.clinbiomech.2011.06.010. Epub 2011 Aug 5.
4
Relationship of anterior knee laxity to knee translations during drop landings: a bi-plane fluoroscopy study.
Knee Surg Sports Traumatol Arthrosc. 2011 Apr;19(4):653-62. doi: 10.1007/s00167-010-1327-6. Epub 2010 Dec 11.
5
Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy.
Am J Sports Med. 2011 Aug;39(8):1714-22. doi: 10.1177/0363546511404922. Epub 2011 May 21.
6
The effects of a subsequent jump on the knee abduction angle during the early landing phase.
BMC Musculoskelet Disord. 2018 Oct 20;19(1):379. doi: 10.1186/s12891-018-2291-4.
7
Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening.
Am J Sports Med. 2013 Mar;41(3):684-8. doi: 10.1177/0363546512472043. Epub 2013 Jan 3.
10
In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy.
Am J Sports Med. 2012 Jan;40(1):170-8. doi: 10.1177/0363546511423746. Epub 2011 Oct 13.

引用本文的文献

1
Muscle Force Contributions to Anterior Cruciate Ligament Loading.
Sports Med. 2022 Aug;52(8):1737-1750. doi: 10.1007/s40279-022-01674-3. Epub 2022 Apr 18.
3
Timing, not magnitude, of force may explain sex-dependent risk of ACL injury.
Knee Surg Sports Traumatol Arthrosc. 2018 Aug;26(8):2424-2429. doi: 10.1007/s00167-018-4859-9. Epub 2018 Feb 10.
4
Prediction of In Vivo Knee Joint Loads Using a Global Probabilistic Analysis.
J Biomech Eng. 2016 Mar;138(3):4032379. doi: 10.1115/1.4032379.
5
Does limited internal femoral rotation increase peak anterior cruciate ligament strain during a simulated pivot landing?
Am J Sports Med. 2014 Dec;42(12):2955-63. doi: 10.1177/0363546514549446. Epub 2014 Sep 22.

本文引用的文献

2
In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy.
Am J Sports Med. 2012 Jan;40(1):170-8. doi: 10.1177/0363546511423746. Epub 2011 Oct 13.
3
A comparison of calibration methods for stereo fluoroscopic imaging systems.
J Biomech. 2011 Sep 2;44(13):2511-5. doi: 10.1016/j.jbiomech.2011.07.001. Epub 2011 Jul 23.
4
Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy.
Am J Sports Med. 2011 Aug;39(8):1714-22. doi: 10.1177/0363546511404922. Epub 2011 May 21.
5
Estimation of in vivo ACL force changes in response to increased weightbearing.
J Biomech Eng. 2011 May;133(5):051004. doi: 10.1115/1.4003780.
6
Relationship of anterior knee laxity to knee translations during drop landings: a bi-plane fluoroscopy study.
Knee Surg Sports Traumatol Arthrosc. 2011 Apr;19(4):653-62. doi: 10.1007/s00167-010-1327-6. Epub 2010 Dec 11.
7
Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury.
J Biomech. 2011 Feb 24;44(4):577-85. doi: 10.1016/j.jbiomech.2010.11.013. Epub 2010 Dec 7.
8
Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing.
J Biomech. 2011 Feb 3;44(3):365-71. doi: 10.1016/j.jbiomech.2010.10.028. Epub 2010 Nov 18.
9
Knee kinematic profiles during drop landings: a biplane fluoroscopy study.
Med Sci Sports Exerc. 2011 Mar;43(3):533-41. doi: 10.1249/MSS.0b013e3181f1e491.
10
Alterations to movement mechanics can greatly reduce anterior cruciate ligament loading without reducing performance.
J Biomech. 2010 Oct 19;43(14):2657-64. doi: 10.1016/j.jbiomech.2010.06.003. Epub 2010 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验