文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

原发性纤毛介导的人骨髓间充质干细胞的机械转导。

Primary cilia-mediated mechanotransduction in human mesenchymal stem cells.

机构信息

Department of Biomedical Engineering, Columbia University, City of New York, New York, USA.

出版信息

Stem Cells. 2012 Nov;30(11):2561-70. doi: 10.1002/stem.1235.


DOI:10.1002/stem.1235
PMID:22969057
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3533782/
Abstract

Physical loading is a potent stimulus required to maintain bone homeostasis, partly through the renewal and osteogenic differentiation of mesenchymal stem cells (MSCs). However, the mechanism by which MSCs sense a biophysical force and translate that into a biochemical bone forming response (mechanotransduction) remains poorly understood. The primary cilium is a single sensory cellular extension, which has recently been shown to demonstrate a role in cellular mechanotransduction and MSC lineage commitment. In this study, we present evidence that short periods of mechanical stimulation in the form of oscillatory fluid flow (OFF) is sufficient to enhance osteogenic gene expression and proliferation of human MSCs (hMSCs). Furthermore, we demonstrate that the cilium mediates fluid flow mechanotransduction in hMSCs by maintaining OFF-induced increases in osteogenic gene expression and, surprisingly, to limit OFF-induced increases in proliferation. These data therefore demonstrate a pro-osteogenic mechanosensory role for the primary cilium, establishing a novel mechanotransduction mechanism in hMSCs. Based on these findings, the application of OFF may be a beneficial component of bioreactor-based strategies to form bone-like tissues suitable for regenerative medicine and also highlights the cilium as a potential therapeutic target for efforts to mimic loading with the aim of preventing bone loss during diseases such as osteoporosis. Furthermore, this study demonstrates a role for the cilium in controlling mechanically mediated increases in the proliferation of hMSCs, which parallels proposed models of polycystic kidney disease. Unraveling the mechanisms leading to rapid proliferation of mechanically stimulated MSCs with defective cilia could provide significant insights regarding ciliopathies and cystic diseases.

摘要

物理负荷是维持骨稳态所必需的有力刺激因素,部分原因是间充质干细胞(MSCs)的更新和成骨分化。然而,MSCs 如何感知生物物理力并将其转化为生化成骨反应(力学转导)的机制仍知之甚少。纤毛是一种单一的感觉细胞延伸,最近已显示其在细胞力学转导和 MSC 谱系分化中发挥作用。在这项研究中,我们提供了证据表明,以振荡液流(OFF)形式进行的短时间机械刺激足以增强人 MSCs(hMSCs)的成骨基因表达和增殖。此外,我们证明纤毛通过维持 OFF 诱导的成骨基因表达增加来介导 hMSCs 中的液流力学转导,并且令人惊讶的是,纤毛限制了 OFF 诱导的增殖增加。因此,这些数据表明初级纤毛在机械感受中具有促成骨作用,为 hMSCs 中的新型力学转导机制奠定了基础。基于这些发现,OFF 的应用可能是基于生物反应器的策略形成适合再生医学的骨样组织的有益组成部分,并且还突出了纤毛作为模仿加载的潜在治疗靶点的潜力,目的是预防骨质疏松症等疾病中的骨丢失。此外,这项研究表明纤毛在控制 hMSCs 机械介导的增殖增加中起作用,这与多囊肾病的模型一致。阐明具有缺陷纤毛的机械刺激 MSC 快速增殖的机制可能会为纤毛病和囊性疾病提供重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/8eafba97a6bd/stem0030-2561-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/156f01ea5f3c/stem0030-2561-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/571c8bdbb215/stem0030-2561-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/5177a465c82d/stem0030-2561-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/7974433070aa/stem0030-2561-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/8eafba97a6bd/stem0030-2561-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/156f01ea5f3c/stem0030-2561-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/571c8bdbb215/stem0030-2561-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/5177a465c82d/stem0030-2561-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/7974433070aa/stem0030-2561-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed61/3533782/8eafba97a6bd/stem0030-2561-f5.jpg

相似文献

[1]
Primary cilia-mediated mechanotransduction in human mesenchymal stem cells.

Stem Cells. 2012-11

[2]
TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium.

Sci Rep. 2018-2-28

[3]
Primary cilium-mediated MSC mechanotransduction is dependent on Gpr161 regulation of hedgehog signalling.

Bone. 2021-4

[4]
A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells.

Biochem Biophys Res Commun. 2011-7-23

[5]
Mesenchymal stem cell mechanotransduction is cAMP dependent and regulated by adenylyl cyclase 6 and the primary cilium.

J Cell Sci. 2018-11-8

[6]
Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism.

FASEB J. 2016-4

[7]
Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells.

Sci Rep. 2013-12-18

[8]
Primary cilia: the chemical antenna regulating human adipose-derived stem cell osteogenesis.

PLoS One. 2013-5-17

[9]
Oscillatory fluid flow influences primary cilia and microtubule mechanics.

Cytoskeleton (Hoboken). 2014-7

[10]
Mechanically induced osteogenic lineage commitment of stem cells.

Stem Cell Res Ther. 2013

引用本文的文献

[1]
The role of mechanobiology in bone and cartilage model systems in characterizing initiation and progression of osteoarthritis.

APL Bioeng. 2022-1-5

[2]
Air Pollution and Osteoporosis.

Curr Osteoporos Rep. 2024-12

[3]
Distraction force promotes the osteogenic differentiation of Gli1 cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway.

Stem Cell Res Ther. 2024-7-6

[4]
Primary cilium-mediated mechanotransduction in cartilage chondrocytes.

Exp Biol Med (Maywood). 2023-8

[5]
A periosteum-derived cell line to study the role of BMP/TGFβ signaling in periosteal cell behavior and function.

Front Physiol. 2023-9-20

[6]
Osteocytes and Primary Cilia.

Curr Osteoporos Rep. 2023-12

[7]
Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs.

Theranostics. 2023

[8]
Cranium growth, patterning and homeostasis.

Development. 2022-11-15

[9]
Pathophysiological mechanism of acute bone loss after fracture.

J Adv Res. 2023-7

[10]
Mechanical stimulation promotes enthesis injury repair by mobilizing cells via ciliary TGF-β signaling.

Elife. 2022-4-27

本文引用的文献

[1]
Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading.

PLoS One. 2012-3-12

[2]
Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes.

Bone. 2011-9-10

[3]
The mechanics of the primary cilium: an intricate structure with complex function.

J Biomech. 2011-9-6

[4]
A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells.

Biochem Biophys Res Commun. 2011-7-23

[5]
Mechanisms regulating cilia growth and cilia function in endothelial cells.

Cell Mol Life Sci. 2011-6-14

[6]
Ciliopathies.

N Engl J Med. 2011-4-21

[7]
Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes.

J Biomed Mater Res A. 2011-3-25

[8]
Three hours of perfusion culture prior to 28 days of static culture, enhances osteogenesis by human cells in a collagen GAG scaffold.

Biotechnol Bioeng. 2011-1-25

[9]
Primary cilia regulate mTORC1 activity and cell size through Lkb1.

Nat Cell Biol. 2010-10-24

[10]
Mechanobiology of embryonic skeletal development: Insights from animal models.

Birth Defects Res C Embryo Today. 2010-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索