Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, United States of America.
PLoS One. 2013 May 17;8(5):e62554. doi: 10.1371/journal.pone.0062554. Print 2013.
Adipose-derived stem cells (ASC) are multipotent stem cells that show great potential as a cell source for osteogenic tissue replacements and it is critical to understand the underlying mechanisms of lineage specification. Here we explore the role of primary cilia in human ASC (hASC) differentiation. This study focuses on the chemosensitivity of the primary cilium and the action of its associated proteins: polycystin-1 (PC1), polycystin-2 (PC2) and intraflagellar transport protein-88 (IFT88), in hASC osteogenesis. To elucidate cilia-mediated mechanisms of hASC differentiation, siRNA knockdown of PC1, PC2 and IFT88 was performed to disrupt cilia-associated protein function. Immunostaining of the primary cilium structure indicated phenotypic-dependent changes in cilia morphology. hASC cultured in osteogenic differentiation media yielded cilia of a more elongated conformation than those cultured in expansion media, indicating cilia-sensitivity to the chemical environment and a relationship between the cilium structure and phenotypic determination. Abrogation of PC1, PC2 and IFT88 effected changes in both hASC proliferation and differentiation activity, as measured through proliferative activity, expression of osteogenic gene markers, calcium accretion and endogenous alkaline phosphatase activity. Results indicated that IFT88 may be an early mediator of the hASC differentiation process with its knockdown increasing hASC proliferation and decreasing Runx2, alkaline phosphatase and BMP-2 mRNA expression. PC1 and PC2 knockdown affected later osteogenic gene and end-product expression. PC1 knockdown resulted in downregulation of alkaline phosphatase and osteocalcin gene expression, diminished calcium accretion and reduced alkaline phosphatase enzymatic activity. Taken together our results indicate that the structure of the primary cilium is intimately associated with the process of hASC osteogenic differentiation and that its associated proteins are critical players in this process. Elucidating the dynamic role of the primary cilium and its associated proteins will help advance the application of hASC in generating autologous tissue engineered therapies in critical defect bone injuries.
脂肪来源的干细胞 (ASC) 是多能干细胞,具有作为成骨组织替代物的细胞来源的巨大潜力,因此了解谱系特化的潜在机制至关重要。在这里,我们探索了初级纤毛在人 ASC(hASC)分化中的作用。这项研究侧重于初级纤毛的化学敏感性及其相关蛋白的作用:多囊蛋白 1 (PC1)、多囊蛋白 2 (PC2) 和鞭毛内运输蛋白 88 (IFT88),在 hASC 成骨过程中。为了阐明 hASC 分化的纤毛介导机制,使用 siRNA 敲低 PC1、PC2 和 IFT88 来破坏纤毛相关蛋白的功能。初级纤毛结构的免疫染色表明纤毛形态存在表型依赖性变化。在成骨分化培养基中培养的 hASC 产生的纤毛比在扩增培养基中培养的纤毛更长,这表明纤毛对化学环境敏感,并且纤毛结构与表型决定之间存在关系。PC1、PC2 和 IFT88 的缺失均会影响 hASC 的增殖和分化活性,这可以通过增殖活性、成骨基因标志物的表达、钙积累和内源性碱性磷酸酶活性来衡量。结果表明,IFT88 可能是 hASC 分化过程的早期介导物,其敲低会增加 hASC 的增殖并降低 Runx2、碱性磷酸酶和 BMP-2 mRNA 的表达。PC1 和 PC2 的敲低会影响晚期成骨基因和终产物的表达。PC1 敲低导致碱性磷酸酶和骨钙素基因表达下调、钙积累减少和碱性磷酸酶酶活性降低。总之,我们的结果表明,初级纤毛的结构与 hASC 成骨分化过程密切相关,其相关蛋白是该过程的关键参与者。阐明初级纤毛的动态作用及其相关蛋白将有助于推进 hASC 在生成用于关键缺损性骨损伤的自体组织工程疗法中的应用。