Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
Sci Signal. 2012 Sep 11;5(241):ra66. doi: 10.1126/scisignal.2002964.
In cancer, deregulated signaling can produce an invasive cellular phenotype. We modeled the invasive transition as a theoretical switch between two cytoskeletal structures: focal adhesions and extracellular matrix-degrading invadopodia. We constructed molecular interaction networks of each structure and identified upstream regulatory hubs through computational analyses. We compared these regulatory hubs to the status of signaling components from head and neck carcinomas, which led us to analyze phosphatidylinositol 3-kinase (PI3K) and protein kinase C α (PKCα). Consistent with previous studies, PI3K activity promoted both the formation and the activity of invadopodia. We found that PI3K induction of invadopodia was increased by overexpression of SH2 (Src homology 2) domain-containing inositol 5'-phosphatase 2 (SHIP2), which converts the phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P(3)] that is produced by PI3K activity to phosphatidylinositol 3,4-bisphosphate [PI(3,4)P(2)], which is believed to promote invadopodia formation. Knockdown of PKCα had divergent effects on invadopodia formation, depending on the status of PI3K. Loss of PKCα inhibited invadopodia formation in cells with wild-type PI3K pathway status. Conversely, in cells with constitutively active PI3K (through activating PI3K mutants or lacking the endogenous opposing enzyme PTEN), PKCα knockdown increased invadopodia formation. Mechanistic studies revealed a negative feedback loop from PKCα that dampened PI3K activity and invasive behavior in cells with genetic hyperactivation of the PI3K pathway. These studies demonstrated the potential of network modeling as a discovery tool and identified PI3K and PKCα as interacting regulators of invasive behavior.
在癌症中,失调的信号转导可产生侵袭性的细胞表型。我们将侵袭性转变模拟为两种细胞骨架结构之间的理论开关:焦点黏附物和细胞外基质降解的侵袭伪足。我们构建了每种结构的分子相互作用网络,并通过计算分析确定了上游调控枢纽。我们将这些调控枢纽与头颈部癌的信号成分状态进行了比较,这使我们分析了磷酸肌醇 3-激酶 (PI3K) 和蛋白激酶 Cα (PKCα)。与先前的研究一致,PI3K 活性促进了侵袭伪足的形成和活性。我们发现,通过过表达 SH2 (Src 同源 2 结构域) 结构域内含物 5'-磷酸酶 2 (SHIP2) ,PI3K 诱导的侵袭伪足增加,SHIP2 将 PI3K 活性产生的磷酸肌醇 3,4,5-三磷酸 [PI(3,4,5)P(3)] 转化为磷酸肌醇 3,4-二磷酸 [PI(3,4)P(2)] ,后者被认为可促进侵袭伪足的形成。PKCα 的敲低对侵袭伪足的形成有不同的影响,这取决于 PI3K 的状态。在具有野生型 PI3K 途径状态的细胞中,PKCα 的缺失抑制了侵袭伪足的形成。相反,在具有组成性激活的 PI3K(通过激活 PI3K 突变体或缺乏内源性拮抗酶 PTEN)的细胞中,PKCα 的敲低增加了侵袭伪足的形成。机制研究揭示了 PKCα 的负反馈回路,该负反馈回路减弱了 PI3K 活性和 PI3K 途径遗传过度激活的细胞中的侵袭行为。这些研究表明,网络建模作为一种发现工具具有潜力,并确定了 PI3K 和 PKCα 是侵袭行为的相互作用调节剂。