Department of Life and Environment Engineering, Faculty of Environmental Engineering, University of Kitakyushu, Wakamatsu, Kitakyushu, Japan.
Sensors (Basel). 2012;12(6):8405-25. doi: 10.3390/s120608405. Epub 2012 Jun 19.
We fabricated an electrode chip with a structure coated by an insulation layer that contains dispersed SiO(2) adsorbent particles modified by an amino-group on a source-drain electrode. Voltage changes caused by chelate molecule adsorption onto electrode surfaces and by specific cation interactions were investigated. The detection of specific cations without the presence of chelate molecules on the free electrode was also examined. By comparing both sets of results the complexation ability of the studied chelate molecules onto the electrode was evaluated. Five pairs of source-drain electrodes(×8 arrays) were fabricated on a glass substrate of 20 × 30 mm in size. The individual Au/Cr (1.0/0.1 μm thickness) electrodes had widths of 50 μm and an inter-electrode interval of 100μm.The fabricated source-drain electrodes were further coated with an insulation layer comprising a porous SiO(2) particle modified amino-group to adsorb the chelate molecules. The electrode chip was equipped with a handy-type sensor signal analyzer that was mounted on an amplifier circuit using a Miniship™ or a system in a packaged LSI device. For electrode surfaces containing different adsorbed chelate molecules an increase in the sensor voltage depended on a combination of host-guest reactions and generally decreased in the following order: 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphine, tetrakis(p-toluenesulfonate) (TMPyP)as a Cu(2+)chelator and Cu(2+)>2-nitroso-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol(nitroso-PSAP) as an Fe(2+)chelator and Fe(2+)>4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BPDSA) as an Fe(2+)chelatorand Fe(2+)>3-[3-(2,4-dimethylphenylcarbamoyl)-2-hydroxynaphthalene-1-yl-azo]-4-hydroxybenzenesulfonic acid, sodium salt (XB-1) as a Mg(2+)chelator and Mg(2+)>2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BCIDSA) as a Cu(2+)chelator and Cu(2+), respectively. In contrast, for the electrode surfaces with adsorbed O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid (GEDTA) or O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid, tetrapotassium salt, hydrate (BAPTA) as a Ca(2+)chelator no increase in the detection voltage was found for all the electrode tests conducted in the presence of Ca(2+).To determine the differences in electrode detection, molecular orbital (MO) calculations of the chelate molecules and surface molecular modeling of the adsorbents were carried out. In accordance with frontier orbital theory, the lowest unoccupied MO (LUMO) of the chelate molecules can accept two lone pair electrons at the highest occupied MO (HOMO) of the amino group on the model surface structure of the SiO(2) particle. As a result, a good correlation was obtained between the LUMO-HOMO difference and the ion response of all the electrodes tested. Based on the results obtained, the order of adsorbed chelate molecules on adsorption particles reflects the different metal ion detection abilities of the electrode chips.
我们制造了一种电极芯片,其结构由包含分散在其中的 SiO(2)吸附剂颗粒的绝缘层覆盖,这些颗粒经过氨基修饰。研究了螯合物分子吸附到电极表面和特定阳离子相互作用引起的电压变化。还研究了在自由电极上不存在螯合物分子时对特定阳离子的检测。通过比较这两组结果,评估了研究的螯合物分子在电极上的络合能力。在 20×30 毫米大小的玻璃衬底上制造了五个源漏电极(×8 个阵列)。单独的 Au/Cr(1.0/0.1 μm 厚度)电极的宽度为 50 μm,电极之间的间隔为 100μm。制造的源漏电极进一步用包含多孔 SiO(2)颗粒修饰的氨基的绝缘层覆盖,以吸附螯合物分子。电极芯片配备了一个便携式传感器信号分析仪,该分析仪安装在放大器电路上,使用 Miniship™或封装在 LSI 设备中的系统。对于含有不同吸附螯合物分子的电极表面,传感器电压的增加取决于主体-客体反应的组合,并且通常按以下顺序减小:5,10,15,20-四(N-甲基吡啶-4-基)-21H,23H-卟啉,四(对甲苯磺酸盐)(TMPyP)作为 Cu(2+)螯合剂和 Cu(2+)>2-亚硝基-5-[N-正丙基-N-(3-磺丙基)氨基]苯酚(亚硝基-PSAP)作为 Fe(2+)螯合剂和 Fe(2+)>4,7-二苯基-1,10-邻二氮杂菲二磺酸,二钠盐(BPDSA)作为 Fe(2+)螯合剂和 Fe(2+)>3-[3-(2,4-二甲基苯甲酰胺基)-2-羟基萘-1-基-偶氮]-4-羟基苯磺酸,钠盐(XB-1)作为 Mg(2+)螯合剂和 Mg(2+)>2,9-二甲基-4,7-二苯基-1,10-邻二氮杂菲二磺酸,二钠盐(BCIDSA)作为 Cu(2+)螯合剂和 Cu(2+),分别。相比之下,对于吸附 O,O'-双(2-氨基乙基)乙二胺-N,N,N',N'-四乙酸(GEDTA)或 O,O'-双(2-氨基苯基)乙二胺-N,N,N',N'-四乙酸,四钾盐,水合物(BAPTA)作为 Ca(2+)螯合剂的电极表面,在存在 Ca(2+)的情况下,所有电极测试均未发现检测电压增加。为了确定电极检测的差异,进行了螯合物分子的分子轨道(MO)计算和吸附剂的表面分子建模。根据前线轨道理论,螯合物分子的最低未占据 MO(LUMO)可以在 SiO(2)颗粒模型表面结构的氨基的最高占据 MO(HOMO)上接受两个孤对电子。结果,在所有测试的电极中,LUMO-HOMO 差与离子响应之间得到了很好的相关性。根据所得到的结果,吸附在吸附颗粒上的螯合物分子的顺序反映了电极芯片对不同金属离子检测能力的差异。