Suppr超能文献

复杂小鼠杂交中表达数量性状位点的检测:数据质量和复杂群体亚结构的影响及缓解

Detection of expression quantitative trait Loci in complex mouse crosses: impact and alleviation of data quality and complex population substructure.

作者信息

Iancu Ovidiu D, Darakjian Priscila, Kawane Sunita, Bottomly Daniel, Hitzemann Robert, McWeeney Shannon

机构信息

Department of Behavioral Neuroscience, Oregon Health and Science University Portland, OR, USA.

出版信息

Front Genet. 2012 Aug 27;3:157. doi: 10.3389/fgene.2012.00157. eCollection 2012.

Abstract

Complex Mus musculus crosses, e.g., heterogeneous stock (HS), provide increased resolution for quantitative trait loci detection. However, increased genetic complexity challenges detection methods, with discordant results due to low data quality or complex genetic architecture. We quantified the impact of theses factors across three mouse crosses and two different detection methods, identifying procedures that greatly improve detection quality. Importantly, HS populations have complex genetic architectures not fully captured by the whole genome kinship matrix, calling for incorporating chromosome specific relatedness information. We analyze three increasingly complex crosses, using gene expression levels as quantitative traits. The three crosses were an F(2) intercross, a HS formed by crossing four inbred strains (HS4), and a HS (HS-CC) derived from the eight lines found in the collaborative cross. Brain (striatum) gene expression and genotype data were obtained using the Illumina platform. We found large disparities between methods, with concordance varying as genetic complexity increased; this problem was more acute for probes with distant regulatory elements (trans). A suite of data filtering steps resulted in substantial increases in reproducibility. Genetic relatedness between samples generated overabundance of detected eQTLs; an adjustment procedure that includes the kinship matrix attenuates this problem. However, we find that relatedness between individuals is not evenly distributed across the genome; information from distinct chromosomes results in relatedness structure different from the whole genome kinship matrix. Shared polymorphisms from distinct chromosomes collectively affect expression levels, confounding eQTL detection. We suggest that considering chromosome specific relatedness can result in improved eQTL detection.

摘要

复杂的小家鼠杂交,例如异质种群(HS),为数量性状基因座检测提供了更高的分辨率。然而,增加的遗传复杂性给检测方法带来了挑战,由于数据质量低或遗传结构复杂,会产生不一致的结果。我们在三个小鼠杂交组合和两种不同的检测方法中量化了这些因素的影响,确定了能显著提高检测质量的程序。重要的是,HS种群具有复杂的遗传结构,全基因组亲缘关系矩阵无法完全捕捉,这就需要纳入染色体特异性的相关性信息。我们以基因表达水平作为数量性状,分析了三个日益复杂的杂交组合。这三个杂交组合分别是F(2)杂交、由四个近交系杂交形成的HS(HS4)以及源自协作杂交中八个品系的HS(HS-CC)。使用Illumina平台获得了大脑(纹状体)基因表达和基因型数据。我们发现不同方法之间存在很大差异,随着遗传复杂性增加,一致性也会变化;对于具有远距离调控元件(反式)的探针,这个问题更为严重。一系列数据过滤步骤显著提高了可重复性。样本之间的遗传相关性导致检测到的eQTL数量过多;一种包括亲缘关系矩阵的调整程序减轻了这个问题。然而,我们发现个体之间的相关性在基因组中分布并不均匀;来自不同染色体的信息导致相关性结构与全基因组亲缘关系矩阵不同。来自不同染色体的共享多态性共同影响表达水平,混淆了eQTL检测。我们建议考虑染色体特异性相关性可以改进eQTL检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7267/3427913/9a21c3edb312/fgene-03-00157-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验