Department of Physiology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
Neural Comput. 2013 Jan;25(1):75-100. doi: 10.1162/NECO_a_00375. Epub 2012 Sep 12.
We simulate the inhibition of Ia-glutamatergic excitatory postsynaptic potential (EPSP) by preceding it with glycinergic recurrent (REN) and reciprocal (REC) inhibitory postsynaptic potentials (IPSPs). The inhibition is evaluated in the presence of voltage-dependent conductances of sodium, delayed rectifier potassium, and slow potassium in five α-motoneurons (MNs). We distribute the channels along the neuronal dendrites using, alternatively, a density function of exponential rise (ER), exponential decay (ED), or a step function (ST). We examine the change in EPSP amplitude, the rate of rise (RR), and the time integral (TI) due to inhibition. The results yield six major conclusions. First, the EPSP peak and the kinetics depending on the time interval are either amplified or depressed by the REC and REN shunting inhibitions. Second, the mean EPSP peak, its TI, and RR inhibition of ST, ER, and ED distributions turn out to be similar for analogous ranges of G. Third, for identical G, the large variations in the parameters' values can be attributed to the sodium conductance step (g(Na_step)) and the active dendritic area. We find that small g(Na_step) on a few dendrites maintains the EPSP peak, its TI, and RR inhibition similar to the passive state, but high g(Na_step) on many dendrites decrease the inhibition and sometimes generates even an excitatory effect. Fourth, the MN's input resistance does not alter the efficacy of EPSP inhibition. Fifth, the REC and REN inhibitions slightly change the EPSP peak and its RR. However, EPSP TI is depressed by the REN inhibition more than the REC inhibition. Finally, only an inhibitory effect shows up during the EPSP TI inhibition, while there are both inhibitory and excitatory impacts on the EPSP peak and its RR.
我们通过在 Ia-谷氨酸能兴奋性突触后电位 (EPSP) 之前施加甘氨酸能递归 (REN) 和交互 (REC) 抑制性突触后电位 (IPSP) 来模拟其抑制作用。在五个 α-运动神经元 (MN) 中钠、延迟整流钾和慢钾的电压依赖性电导存在的情况下,评估抑制作用。我们使用指数上升 (ER)、指数衰减 (ED) 或阶跃函数 (ST) 的密度函数沿神经元树突分布通道。我们检查由于抑制而导致的 EPSP 幅度、上升率 (RR) 和时间积分 (TI) 的变化。结果得出了六个主要结论。首先,REC 和 REN 分流抑制作用会放大或削弱 EPSP 峰值及其取决于时间间隔的动力学。其次,对于类似的 G 范围,ST、ER 和 ED 分布的 EPSP 峰值、TI 和 RR 抑制的均值,结果表明它们是相似的。第三,对于相同的 G,参数值的大变化可归因于钠电导阶跃 (g(Na_step)) 和活性树突区。我们发现,少数树突上的小 g(Na_step) 可维持 EPSP 峰值、TI 和 RR 抑制作用类似于被动状态,但许多树突上的高 g(Na_step) 会降低抑制作用,有时甚至会产生兴奋作用。第四,MN 的输入电阻不会改变 EPSP 抑制的效果。第五,REC 和 REN 抑制作用会轻微改变 EPSP 峰值及其 RR。然而,与 REC 抑制相比,REN 抑制作用会使 EPSP TI 下降。最后,只有在 EPSP TI 抑制期间才会出现抑制作用,而 EPSP 峰值及其 RR 则会产生抑制和兴奋两种影响。