Suppr超能文献

ANUBIS:基于贝叶斯推理系统的人工神经调节。

ANUBIS: artificial neuromodulation using a Bayesian inference system.

机构信息

Surrey Space Centre, Department of Electronic Engineering, University of Surrey, Guildford, Surrey, UK.

出版信息

Neural Comput. 2013 Jan;25(1):221-58. doi: 10.1162/NECO_a_00376. Epub 2012 Sep 12.

Abstract

Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework.

摘要

增益调整是控制器设计的关键部分,不仅取决于对所讨论系统的准确理解,还取决于设计者预测系统在整个运行过程中会遇到哪些干扰和其他扰动的能力。这封信介绍了 ANUBIS(使用贝叶斯推理系统的人工神经调制),这是一种新颖的受生物启发的实时自动调整控制器参数的技术。ANUBIS 基于贝叶斯大脑概念,并通过纳入由四个人工神经调制器组成的神经调制系统模型对其进行了修改。它已应用于 EchinoBot 的控制器中,EchinoBot 是一种用于火星探索的原型步行漫游者。ANUBIS 已在控制器的三个级别上实现;步态生成,使用贝塞尔曲线的脚部轨迹规划,以及使用终端滑动模式控制器的脚部轨迹跟踪。我们将结果与使用多层感知器进行调整的类似系统进行了比较。使用贝叶斯推理意味着该系统保留了数学可解释性,与使用神经网络、模糊逻辑或进化算法的其他智能调整技术不同。模拟结果表明,ANUBIS 可显著提高三个控制器组件的效率和适应性;它允许机器人比使用 MLP 调整的系统更快地对障碍物和不确定性做出反应,同时保持稳定性和准确性。除了提高漫游者的自主性外,ANUBIS 还可以应用于其他操作条件可能发生变化或无法提前准确建模的情况,例如过程控制。此外,它展示了神经调制如何适应贝叶斯大脑框架的一种方式。

相似文献

10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验