Biotechnology Division, Central Institute of Medicinal and Aromatic Plants-Council of Scientific and Industrial Research, Post Office CIMAP, Lucknow 226015, India.
J Biomol Struct Dyn. 2013;31(8):874-87. doi: 10.1080/07391102.2012.718526. Epub 2012 Sep 13.
Fusarium solani causes a wide variety of diseases in plants. Polyamine biosynthesis is responsible for the growth and pathogenicity of the fungus. The initial step of this pathway involves the decarboxylation of ornithine to putrescine, and is catalyzed by the enzyme ornithine decarboxylase (ODC). Inhibiting this process may be a promising approach for the management of fungal disease in various crops. Therefore, there is a need to develop inhibitors of ODC that have higher binding capacity than ornithine. Fifteen peptides were designed and modeled based on physicochemical properties of residues in the active site of ODC. The peptide GLIWGNGPF showed the highest dock score. It is assumed that the de novo design of peptides could be a potential approach to inhibit polyamine biosynthesis. Molecular dynamics studies make an important contribution to understanding the effect of the binding of peptides and the stability of an ODC-peptide complex system. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:8 .
镰刀菌属可引起植物的多种疾病。多胺生物合成负责真菌的生长和致病性。该途径的起始步骤涉及鸟氨酸脱羧生成腐胺,由鸟氨酸脱羧酶(ODC)催化。抑制这一过程可能是管理各种作物真菌病的一种有前途的方法。因此,需要开发具有比鸟氨酸更高结合能力的 ODC 抑制剂。基于 ODC 活性部位残基的物理化学性质,设计并模拟了 15 个肽。肽 GLIWGNGPF 表现出最高的对接评分。据推测,肽的从头设计可能是抑制多胺生物合成的一种潜在方法。分子动力学研究对理解肽结合的影响和 ODC-肽复合物体系的稳定性做出了重要贡献。动画交互式 3D 补充(I3DC)可在 Proteopedia 上获得,网址为 http://proteopedia.org/w/Journal:JBSD:8 。