Suppr超能文献

超疏水织构表面对莱顿弗罗斯特蒸气层的稳定作用。

Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.

机构信息

Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

出版信息

Nature. 2012 Sep 13;489(7415):274-7. doi: 10.1038/nature11418.

Abstract

In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling--by heat transfer--the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating.

摘要

1756 年,莱顿弗罗斯特观察到,由于蒸发蒸汽膜的浮升作用,水滴在足够热的煎锅上会四处弹跳。只有当热表面高于临界温度时,这种薄膜才稳定,并且是沸腾的核心现象。在所谓的莱顿弗罗斯特状态下,蒸汽层的低热导率抑制了热表面和液体之间的热传递。当冷却表面的温度降至临界温度以下时,蒸汽膜会坍塌,系统进入核沸腾状态,这可能会导致在某些情况下(如核电站)特别有害的蒸汽爆炸。这些蒸汽膜的存在也可以降低液-固阻力。在这里,我们展示了如何完全抑制具有纹理的超疏水表面上的蒸汽膜坍塌。在光滑的疏水表面上,蒸汽膜在冷却时仍会坍塌,尽管临界温度降低,但系统会突然切换到核沸腾。相比之下,在具有纹理的超疏水表面上,蒸汽层会逐渐松弛,直到表面完全冷却,而不会出现核沸腾阶段。这一结果表明,超疏水材料的拓扑结构对于稳定蒸汽层至关重要,从而通过热传递控制热表面上的液-气相变。这一概念可应用于控制其他相变,如冰或霜的形成,以及设计低阻力表面,在这些表面上,蒸汽相在没有加热的情况下稳定在纹理的凹槽中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验