Santos M Victoria, Sansinena M, Chirife J, Zaritzky N
Depto. de Ingeniería Química, Facultad de Ingeniería, Universidad Nacional de La Plata and Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CONICET-UNLP), Calle 47 y 116, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, A. Rivadavia 1917, CABA 1033, Argentina.
Facultad de Ciencias Agrarias, Pontificia Universidad Católica Argentina, Cap. Gral. Ramón Freire 183, CABA 1426, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, A. Rivadavia 1917, CABA 1033, Argentina.
Cryobiology. 2014 Dec;69(3):488-95. doi: 10.1016/j.cryobiol.2014.10.010. Epub 2014 Oct 31.
The knowledge of the thermodynamic process during the cooling of reproductive biological systems is important to assess and optimize the cryopreservation procedures. The time-temperature curve of a sample immersed in liquid nitrogen enables the calculation of cooling rates and helps to determine whether it is vitrified or undergoes phase change transition. When dealing with cryogenic liquids, the temperature difference between the solid and the sample is high enough to cause boiling of the liquid, and the sample can undergo different regimes such as film and/or nucleate pool boiling. In the present work, the surface heat transfer coefficients (h) for plastic French straws plunged in liquid nitrogen were determined using the measurement of time-temperature curves. When straws filled with ice were used the cooling curve showed an abrupt slope change which was attributed to the transition of film into nucleate pool boiling regime. The h value that fitted each stage of the cooling process was calculated using a numerical finite element program that solves the heat transfer partial differential equation under transient conditions. In the cooling process corresponding to film boiling regime, the h that best fitted experimental results was h=148.12±5.4 W/m(2) K and for nucleate-boiling h=1355±51 W/m(2) K. These values were further validated by predicting the time-temperature curve for French straws filled with a biological fluid system (bovine semen-extender) which undergoes freezing. Good agreement was obtained between the experimental and predicted temperature profiles, further confirming the accuracy of the h values previously determined for the ice-filled straw. These coefficients were corroborated using literature correlations. The determination of the boiling regimes that govern the cooling process when plunging straws in liquid nitrogen constitutes an important issue when trying to optimize cryopreservation procedures. Furthermore, this information can lead to improvements in the design of cooling devices in the cryobiology field.
了解生殖生物系统冷却过程中的热力学过程对于评估和优化冷冻保存程序非常重要。浸入液氮中的样品的时间 - 温度曲线能够计算冷却速率,并有助于确定它是被玻璃化还是经历相变转变。在处理低温液体时,固体与样品之间的温差足够高,足以导致液体沸腾,并且样品可以经历不同的状态,如膜状沸腾和/或核态池沸腾。在本工作中,通过测量时间 - 温度曲线来确定浸入液氮中的塑料法式细管的表面传热系数(h)。当使用装有冰的细管时,冷却曲线显示出突然的斜率变化,这归因于从膜状沸腾到核态池沸腾状态的转变。使用数值有限元程序计算适合冷却过程每个阶段的h值,该程序在瞬态条件下求解热传递偏微分方程。在对应于膜状沸腾状态的冷却过程中,最符合实验结果的h值为h = 148.12±5.4 W/m²K,对于核态沸腾,h = 1355±51 W/m²K。通过预测装有生物流体系统(牛精液稀释液)并经历冷冻的法式细管的时间 - 温度曲线,进一步验证了这些值。实验和预测的温度曲线之间取得了良好的一致性,进一步证实了先前为装有冰的细管确定的h值的准确性。这些系数通过文献相关性得到了证实。确定液氮中细管冷却过程中控制沸腾状态的因素在试图优化冷冻保存程序时是一个重要问题。此外,这些信息可以改进低温生物学领域冷却设备的设计。