Suppr超能文献

[改善数据仓库环境以高效分析长时间序列数据]

[Improving data warehouse environments for efficient analysis of long time-series data].

作者信息

Kataoka Hiromi, Hatakeyama Yutaka, Okuhara Yoshiyasu, Sugiura Tetsuro

机构信息

Kochi Medical School, Center of Medical Information Science 783-8505, Japan.

出版信息

Rinsho Byori. 2012 Jul;60(7):698-706.

Abstract

Medical records contain enormous amounts of data. It is important to extract useful evidence from such data and feedback to clinical medicine. Evidence-based medicine (EBM) was introduced in the 1990s and has been widely used for more than 20 years, however, hospital information system environments that take advantage of the ideas of EBM have not yet been established. Recently, the numbers of medical institutions with multilateral search systems for the medical records stored in data warehouses (DWHs) have been increasing, but these institutions' systems cannot deal fully with issues such as data reliability and high-dimensional, high-speed searches. DWHs can control long time-series data. Although, the measurement methods and analytical equipment used have been modified and improved with advances in testing techniques, this may have induced shifting and/or fragmentation of these types of data. Furthermore, database design has to be flexible to satisfy the various demands of information retrieval; systems must therefore have the structures to deal with such demands. We report here our new system infrastructure, which exchanges data in order to absorb the data shifting associated with changes in the testing methods. The system enables the preparation of DWH environments that can be used to seamlessly analyze long time-series data, record in knowledge databases the results of comprehensive analyses of institutions' characteristics of laboratory diagnoses, and use the data in education, research and clinical practice.

摘要

医疗记录包含大量数据。从这些数据中提取有用证据并反馈给临床医学非常重要。循证医学(EBM)于20世纪90年代引入,已广泛应用20多年,但尚未建立利用EBM理念的医院信息系统环境。最近,拥有用于数据仓库(DWH)中存储的医疗记录多边搜索系统的医疗机构数量不断增加,但这些机构的系统无法完全处理数据可靠性和高维、高速搜索等问题。DWH可以控制长时间序列数据。尽管随着检测技术的进步,所使用的测量方法和分析设备已经得到改进,但这可能导致这类数据的偏移和/或碎片化。此外,数据库设计必须灵活以满足信息检索的各种需求;因此,系统必须具备处理此类需求的结构。我们在此报告我们的新系统基础设施,该设施通过交换数据来吸收与检测方法变化相关的数据偏移。该系统能够创建DWH环境用于无缝分析长时间序列数据,将机构实验室诊断特征的综合分析结果记录在知识数据库中,并将这些数据用于教育、研究和临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验