School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China.
Artif Intell Med. 2010 Feb-Mar;48(2-3):139-52. doi: 10.1016/j.artmed.2009.07.012. Epub 2010 Feb 1.
OBJECTIVE: Traditional Chinese medicine (TCM) is a scientific discipline, which develops the related theories from the long-term clinical practices. The large-scale clinical data are the core empirical knowledge source for TCM research. This paper introduces a clinical data warehouse (CDW) system, which incorporates the structured electronic medical record (SEMR) data for medical knowledge discovery and TCM clinical decision support (CDS). MATERIALS AND METHODS: We have developed the clinical reference information model (RIM) and physical data model to manage the various information entities and their relationships in TCM clinical data. An extraction-transformation-loading (ETL) tool is implemented to integrate and normalize the clinical data from different operational data sources. The CDW includes online analytical processing (OLAP) and complex network analysis (CNA) components to explore the various clinical relationships. Furthermore, the data mining and CNA methods are used to discover the valuable clinical knowledge from the data. RESULTS: The CDW has integrated 20,000 TCM inpatient data and 20,000 outpatient data, which contains manifestations (e.g. symptoms, physical examinations and laboratory test results), diagnoses and prescriptions as the main information components. We propose a practical solution to accomplish the large-scale clinical data integration and preprocessing tasks. Meanwhile, we have developed over 400 OLAP reports to enable the multidimensional analysis of clinical data and the case-based CDS. We have successfully conducted several interesting data mining applications. Particularly, we use various classification methods, namely support vector machine, decision tree and Bayesian network, to discover the knowledge of syndrome differentiation. Furthermore, we have applied association rule and CNA to extract the useful acupuncture point and herb combination patterns from the clinical prescriptions. CONCLUSION: A CDW system consisting of TCM clinical RIM, ETL, OLAP and data mining as the core components has been developed to facilitate the tasks of TCM knowledge discovery and CDS. We have conducted several OLAP and data mining tasks to explore the empirical knowledge from the TCM clinical data. The CDW platform would be a promising infrastructure to make full use of the TCM clinical data for scientific hypothesis generation, and promote the development of TCM from individualized empirical knowledge to large-scale evidence-based medicine.
目的:中医是一门科学学科,它从长期的临床实践中发展出相关理论。大规模的临床数据是中医研究的核心经验知识来源。本文介绍了一个临床数据仓库(CDW)系统,该系统将结构化电子病历(SEMR)数据纳入其中,用于医学知识发现和中医临床决策支持(CDS)。
材料和方法:我们开发了临床参考信息模型(RIM)和物理数据模型,以管理中医临床数据中的各种信息实体及其关系。实施了一个提取-转换-加载(ETL)工具,用于整合和规范化来自不同操作数据源的临床数据。CDW 包括在线分析处理(OLAP)和复杂网络分析(CNA)组件,以探索各种临床关系。此外,还使用数据挖掘和 CNA 方法从数据中发现有价值的临床知识。
结果:CDW 集成了 20000 例中医住院数据和 20000 例门诊数据,其中包含主要信息成分,如症状、体检和实验室检查结果、诊断和处方。我们提出了一种实用的解决方案来完成大规模的临床数据集成和预处理任务。同时,我们开发了 400 多个 OLAP 报告,以实现临床数据的多维分析和基于案例的 CDS。我们已经成功地进行了几个有趣的数据挖掘应用。特别是,我们使用了各种分类方法,如支持向量机、决策树和贝叶斯网络,来发现证候分类的知识。此外,我们还应用关联规则和 CNA 从临床处方中提取有用的穴位和草药组合模式。
结论:一个由中医临床 RIM、ETL、OLAP 和数据挖掘作为核心组件的 CDW 系统已经开发出来,以促进中医知识发现和 CDS 的任务。我们已经进行了几个 OLAP 和数据挖掘任务,以探索中医临床数据中的经验知识。CDW 平台将成为充分利用中医临床数据进行科学假设生成的有前途的基础设施,并促进中医从个体化经验知识向大规模循证医学的发展。
Artif Intell Med. 2006-11
J Biomed Inform. 2010-1-13
BMC Complement Altern Med. 2008-10-14
J Healthc Inf Manag. 2001
Artif Intell Med. 2008-3
BMC Bioinformatics. 2007-5-9
Comput Methods Programs Biomed. 2007-12
Health Care Sci. 2023-10-4
Alzheimers Res Ther. 2023-3-10
Evid Based Complement Alternat Med. 2023-2-1
Front Med (Lausanne). 2022-11-10
Evid Based Complement Alternat Med. 2022-10-12
BMC Med Inform Decis Mak. 2022-3-29