Suppr超能文献

从头组装高度多样化的病毒群体。

De novo assembly of highly diverse viral populations.

机构信息

The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

出版信息

BMC Genomics. 2012 Sep 13;13:475. doi: 10.1186/1471-2164-13-475.

Abstract

BACKGROUND

Extensive genetic diversity in viral populations within infected hosts and the divergence of variants from existing reference genomes impede the analysis of deep viral sequencing data. A de novo population consensus assembly is valuable both as a single linear representation of the population and as a backbone on which intra-host variants can be accurately mapped. The availability of consensus assemblies and robustly mapped variants are crucial to the genetic study of viral disease progression, transmission dynamics, and viral evolution. Existing de novo assembly techniques fail to robustly assemble ultra-deep sequence data from genetically heterogeneous populations such as viruses into full-length genomes due to the presence of extensive genetic variability, contaminants, and variable sequence coverage.

RESULTS

We present VICUNA, a de novo assembly algorithm suitable for generating consensus assemblies from genetically heterogeneous populations. We demonstrate its effectiveness on Dengue, Human Immunodeficiency and West Nile viral populations, representing a range of intra-host diversity. Compared to state-of-the-art assemblers designed for haploid or diploid systems, VICUNA recovers full-length consensus and captures insertion/deletion polymorphisms in diverse samples. Final assemblies maintain a high base calling accuracy. VICUNA program is publicly available at: http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/ viral-genomics-analysis-software.

CONCLUSIONS

We developed VICUNA, a publicly available software tool, that enables consensus assembly of ultra-deep sequence derived from diverse viral populations. While VICUNA was developed for the analysis of viral populations, its application to other heterogeneous sequence data sets such as metagenomic or tumor cell population samples may prove beneficial in these fields of research.

摘要

背景

感染宿主体内病毒群体的广泛遗传多样性,以及变体与现有参考基因组的分化,阻碍了对深度病毒测序数据的分析。从头种群共识组装既可以作为群体的单一线性表示,也可以作为准确映射宿主内变体的主干,具有重要价值。共识组装和稳健映射变体的可用性对于病毒疾病进展、传播动态和病毒进化的遗传研究至关重要。由于存在广泛的遗传变异性、污染物和可变序列覆盖度,现有的从头组装技术无法稳健地将来自遗传异质群体(如病毒)的超深度序列数据组装成全基因组。

结果

我们提出了 VICUNA,这是一种从头组装算法,适用于从遗传异质群体生成共识组装。我们在登革热、人类免疫缺陷和西尼罗河病毒群体中证明了其有效性,这些群体代表了宿主内多样性的一系列范围。与专为单倍体或二倍体系统设计的最先进的组装器相比,VICUNA 恢复了全长共识,并在多样化的样本中捕获插入/缺失多态性。最终组装保持了高碱基调用准确性。VICUNA 程序可在以下网址获得:http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/viral-genomics-analysis-software。

结论

我们开发了 VICUNA,这是一种公开可用的软件工具,可实现来自不同病毒群体的超深度序列的共识组装。虽然 VICUNA 是为病毒群体分析而开发的,但它在其他异质序列数据集(如宏基因组或肿瘤细胞群体样本)中的应用可能在这些研究领域中具有益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d5d/3469330/b4b24f1d93c3/1471-2164-13-475-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验