Suppr超能文献

Resistance to 4-(9-acridinylamino) methanesulphon-m-anisidide (m-AMSA) in human myeloid leukaemia.

作者信息

Skinner W L, Murray D, Kohli V, Beran M, McCredie K B, Freireich E J, Andersson B S

机构信息

Department of Hematology, University of Texas M.D. Anderson Cancer Center, Houston 77030.

出版信息

Br J Cancer. 1990 Jan;61(1):51-5. doi: 10.1038/bjc.1990.11.

Abstract

Sublines of a human myeloid leukaemia cell line, KBM-3, with increasing degrees of resistance to the antileukaemic agent 4'-(9-acridinlylamino) methanesulphon-m-anisidide (m-AMSA) were evaluated for their response to this drug using a clonogenic assay to measure cell survival and alkaline elution to assess m-AMSA induced DNA strand breakage. Polyacrylamide gel electrophoresis was used to map the protein profiles of the various cell lines. The resistant lines were obtained by intermittent exposure of the KBM-3 cells to the highest tolerated concentration of m-AMSA so that the culture would be repopulated only by the most resistant subpopulation after each exposure. Two distinct phases were apparent during the development of resistance. During the first 14 months of intermittent exposure to maximally tolerated concentrations of m-AMSA, the cells developed low-degree m-AMSA resistance (5-7-fold as compared with the parent line, as measured by cell survival). This low-degree resistance was characterised by a somewhat suppressed level of DNA strand breakage and no measurable change in cellular protein levels. Subsequently, a single escalation of the m-AMSA retreatment concentration resulted in a cell population that was approximately 100-fold resistant, as assessed by cloning. This rapid phenotypic change temporally coincided with the acquisition of an almost complete refractoriness to m-AMSA-induced DNA strand breakage and the loss of a cellular 76 kDa protein. We suggest that the loss of this protein is important for the development of a highly m-AMSA resistant phenotype.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbf3/1971335/9486f603a3aa/brjcancer00221-0066-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验