Kadima W, McPherson A, Dunn M F, Jurnak F A
Department of Biochemistry, University of California, Riverside 92521.
Biophys J. 1990 Jan;57(1):125-32. doi: 10.1016/S0006-3495(90)82513-3.
The aggregation processes leading to crystallization and precipitation of canavalin have been investigated by dynamic light scattering (DLS) in photon correlation spectroscopy (PCS) mode. The sizes of aggregates formed under various conditions of pH, salt concentration, and protein concentrations were deduced from the correlation functions generated by the fluctuating intensity of light scattered by the solutions of the protein. Results obtained indicate that the barrier to crystallization of canavalin is the formation of the trimer, a species that has been characterized by x-ray crystallographic studies (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480). The dimensions of the trimer in solution are in good agreement with those obtained both from the crystal (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480) and from a low angle x-ray scattering study in solution (Plietz, P., P. Damaschun, J. J. Müller, and B. Schlener. 1983. FEBS [Fed. Eur. Biochem. Soc.] Lett. 162:43-46). Furthermore, under conditions known to lead to the formation of rhombohedral crystals of canavalin, a limiting size is reached at high concentrations of canavalin. The size measured corresponds to an aggregate of trimers making a unit rhombohedral cell consistent with x-ray crystallographic data (McPherson, A. 1980. J. Biol. Chem. 255:10472-10480). Presumably, such aggregates are the nuclei from which crystal growth proceeds. The present study was undertaken primarily to test the potential of DLS (PCS) as a tool for rapid, routine screening to determine the ultimate fate of protein solutions (i.e., crystallization or amorphous precipitation) at an early stage, therefore eliminating the need for long-term visual observation. Achieving this goal would constitute amajor advance in the practive of protein crystallization. Delays imposed by visual observation would be considerably reduced, and a more systematic approach could be adopted to select experimental conditions.Our findings with canavalin demonstrate that DLS(PCS) is, indeed, a selective and sensitive probe of precrystallization conditions. Other advantages of this technique include the facts that it is noninvasive, nondestructive,universal, and does not require calibration.
通过动态光散射(DLS)的光子相关光谱(PCS)模式,研究了导致伴刀豆球蛋白结晶和沉淀的聚集过程。根据蛋白质溶液散射光强度波动产生的相关函数,推导出在不同pH、盐浓度和蛋白质浓度条件下形成的聚集体的大小。所得结果表明,伴刀豆球蛋白结晶的障碍是三聚体的形成,三聚体已通过X射线晶体学研究得到表征(麦克弗森,A. 1980.《生物化学杂志》255:10472 - 10480)。溶液中三聚体的尺寸与从晶体(麦克弗森,A. 1980.《生物化学杂志》255:10472 - 10480)以及溶液中的小角X射线散射研究(普利茨,P.,P. 达马施恩,J. J. 米勒,和B. 施莱纳。1983.《欧洲生物化学学会联合会快报》162:43 - 46)中获得的尺寸高度一致。此外,在已知会导致伴刀豆球蛋白菱形晶体形成的条件下,伴刀豆球蛋白高浓度时会达到一个极限尺寸。所测量的尺寸对应于由三聚体组成的聚集体,形成一个与X射线晶体学数据(麦克弗森,A. 1980.《生物化学杂志》255:10472 - 10480)一致的单位菱形晶胞。据推测,这样的聚集体是晶体生长的晶核。本研究主要旨在测试DLS(PCS)作为一种工具的潜力,用于在早期阶段快速、常规地筛选以确定蛋白质溶液的最终命运(即结晶或无定形沉淀),从而无需进行长期的目视观察。实现这一目标将是蛋白质结晶实践中的一项重大进展。目视观察带来的延迟将大大减少,并且可以采用更系统的方法来选择实验条件。我们对伴刀豆球蛋白的研究结果表明,DLS(PCS)确实是预结晶条件的一种选择性和灵敏的探针。该技术的其他优点包括它是非侵入性的、非破坏性的、通用的,并且不需要校准。