Mazer N A, Carey M C
Biochemistry. 1983 Jan 18;22(2):426-42. doi: 10.1021/bi00271a029.
We have employed quasi-elastic light-scattering methods to characterize micellar aggregates and microprecipitates formed in aqueous solutions containing sodium taurocholate (TC), egg lecithin (L), and cholesterol (Ch). Particle size and polydispersity were studied as functions of Ch mole fraction (XCh = 0-15%), L/TC molar ratio (0-1.6), temperature (5-85 degrees C), and total lipid concentration (3 and 10 g/dL in 0.15 M NaCl). For XCh values below the established solubilization limits (XChmax) [Carey, M. C., & Small, D. M. (1978) J. Clin. Invest. 61, 998], added Ch has little influence on the size of simple TC micelles (type 1 systems), on the coexistence of simple and mixed TC-L micelles (type 2 systems), or on the growth of "mixed disc" TC-L micelles (type 3 systems). For supersaturated systems (XCh/XChmax greater than 1), 10 g/dL type 1 systems (L/TC = 0) exist as metastable micellar solutions even at XCh/XChmax = 5.3. Metastability is decreased in type 2 systems (0 less than L/TC less than 0.6), and "labile" microprecipitation occurs when XCh/XChmax exceeds approximately 1.6. In 10 g/dL mixtures, the microprecipitates initially range in size from 500 to 20000 A and later coalesce to form a buoyant macroscopic precipitate phase. In 3 g/dL mixtures, the microprecipitates are smaller (200-400 A) and remain as a stable, noncoalesced microdispersion. Transmission electron microscopy of the microprecipitates formed at both concentrations indicates a globular noncrystalline structure, and lipid analysis reveals the presence of cholesterol and lecithin in a molar ratio (Ch/L) of approximately 2/1, suggesting that the microprecipitates represent a metastable cholesterol-rich liquid-crystalline phase. In supersaturated type 3 systems (0.6 less than L/TC less than 2.0), the precipitate phase is a lecithin-rich liquid-crystalline phase which likewise coalesces in a 10 g/dL system but forms stable vesicle (liposomal) structures (600-800 A radius) in 3 g/dL systems. In conjunction with these experimental data, we present a quantitative thermodynamic analysis of Ch solubilization in model bile systems from which rigorous deductions of the free energy and enthalpy change for solubilization of cholesterol monohydrate in type 1 and type 2 systems are obtained. In addition, we employ homogeneous nucleation theory to analyze the origin of the metastable/labile limit in supersaturated systems and to deduce the interfacial tension between microprecipitates and solution. On the basis of these experimental data and theoretical analyses, we offer new hypotheses on the structure and physiology of bile and the pathogenesis of Ch gallstones. In particular, it is suggested that the "stable" microprecipitates observed in 3 g/dL type 2 systems may provide a secondary vehicle (in addition to micelles) for cholesterol transport in supersaturated hepatic bile.
我们采用准弹性光散射方法来表征在含有牛磺胆酸钠(TC)、卵磷脂(L)和胆固醇(Ch)的水溶液中形成的胶束聚集体和微沉淀物。研究了粒径和多分散性与Ch摩尔分数(XCh = 0 - 15%)、L/TC摩尔比(0 - 1.6)、温度(5 - 85℃)以及总脂质浓度(在0.15 M NaCl中为3和10 g/dL)的关系。对于低于既定增溶极限(XChmax)[Carey, M. C., & Small, D. M. (1978) J. Clin. Invest. 61, 998]的XCh值,添加的Ch对简单TC胶束(1型体系)的大小、简单和混合TC - L胶束(2型体系)的共存或“混合盘状”TC - L胶束(3型体系)的生长影响很小。对于过饱和体系(XCh/XChmax大于1),即使在XCh/XChmax = 5.3时,10 g/dL的1型体系(L/TC = 0)也以亚稳胶束溶液形式存在。在2型体系(0小于L/TC小于0.6)中亚稳性降低,当XCh/XChmax超过约1.6时会发生“不稳定”的微沉淀。在10 g/dL的混合物中,微沉淀物最初大小在500到20000 Å之间,随后聚结形成一个漂浮的宏观沉淀相。在3 g/dL的混合物中,微沉淀物较小(200 - 400 Å),并保持为稳定的、不聚结的微分散体。对在两种浓度下形成的微沉淀物进行透射电子显微镜观察表明其具有球状非晶结构,并通过脂质分析揭示胆固醇和卵磷脂以大约2/1的摩尔比(Ch/L)存在,这表明微沉淀物代表一种富含胆固醇的亚稳液晶相。在过饱和的3型体系(0.6小于L/TC小于2.0)中,沉淀相是富含卵磷脂的液晶相,其在10 g/dL体系中同样会聚结,但在3 g/dL体系中形成稳定的囊泡(脂质体)结构(半径为600 - 800 Å)。结合这些实验数据,我们对模型胆汁体系中Ch的增溶进行了定量热力学分析,从中获得了关于1型和2型体系中胆固醇一水合物增溶的自由能和焓变的严格推导。此外,我们采用均相成核理论来分析过饱和体系中亚稳/不稳定极限的起源,并推导微沉淀物与溶液之间的界面张力。基于这些实验数据和理论分析,我们对胆汁的结构和生理学以及Ch胆结石的发病机制提出了新的假设。特别是,有人提出在3 g/dL的2型体系中观察到的“稳定”微沉淀物可能为过饱和肝胆汁中的胆固醇转运提供一种次要载体(除胶束外)。