Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan.
Anal Chem. 2012 Oct 16;84(20):8830-6. doi: 10.1021/ac302239k. Epub 2012 Oct 4.
We report the fabrication of two different cell patterns based on negative dielectrophoresis (n-DEP) and apply it to simple and rapid distinction of cells with specific surface antigens from a cell population. The DEP device for cell manipulation comprised a microfluidic channel with an upper indium tin oxide (ITO) electrode and a lower ITO-interdigitated band array (ITO-IDA) electrode modified with an antibody. Cells immediately accumulated on the surface in the gap area between both bands of the ITO-IDA electrode by n-DEP upon AC voltage between the upper ITO and both lower bands. Switching of the applied band electrode voltage resulted in the removal of accumulated cells to form another pattern because of the formation of a different electric field pattern in the device. Modifying the ITO-IDA surface with the antibody inhibited the removal of the cells with a specific surface antigen for irreversible capture by immunoreactions during the first accumulation. In this study, we targeted the CD33 surface antigen expressed on human promyelocytic leukemia cells (HL-60). The time required for the assay was substantially short: 60 s for forcing and 60 s for separating the unbound cells. Furthermore, the present method does not require pretreatment such as target labeling or washing of unbound cells. Moreover, the use of the swing technique considerably improved cell binding to the antibody-modified surface for cells with a specific surface antigen. The distinct integration of cells with n-DEP in the high conductivity medium provided higher cell binding efficiency compared to that obtained in our previous study (Hatanaka, H.; Yasukawa, T.; Mizutani, F. Anal. Chem., 2011, 83, 7207-7212) without loss of rapidity and simplicity.
我们报告了两种不同的细胞模式的制造基于负介电泳(nDEP),并将其应用于从细胞群体中简单快速地区分具有特定表面抗原的细胞。用于细胞操作的DEP 设备包括一个带有上铟锡氧化物(ITO)电极和下 ITO 交错带阵列(ITO-IDA)电极的微流控通道,该电极用抗体修饰。当在上 ITO 和下两个带电极之间施加交流电压时,细胞通过 nDEP 立即在上 ITO-IDA 电极的两个带之间的间隙区域积聚在表面上。由于设备中形成了不同的电场模式,因此切换施加的带电极电压会导致积聚的细胞被去除以形成另一种图案。用抗体修饰 ITO-IDA 表面会抑制具有特定表面抗原的细胞的去除,因为在第一次聚集过程中,免疫反应会导致不可逆捕获。在这项研究中,我们针对人早幼粒细胞白血病细胞(HL-60)表面表达的 CD33 表面抗原。测定所需的时间大大缩短:强制 60 秒,分离未结合的细胞 60 秒。此外,本方法不需要预处理,例如目标标记或未结合细胞的洗涤。此外,摆动技术的使用大大提高了具有特定表面抗原的细胞与抗体修饰表面的结合。与我们之前的研究(Hatanaka,H.;Yasukawa,T.;Mizutani,F. Anal.Chem.,2011,83,7207-7212)相比,在高导电性介质中利用 nDEP 对细胞的明显集成提供了更高的细胞结合效率,而不会损失快速性和简单性。