Suppr超能文献

4-芳亚甲基/环亚烷基二胺 1,2-萘醌缩硫代氨基脲的合成、细胞毒性评价、对接和计算机药代动力学预测。

Synthesis, cytotoxic evaluation, docking and in silico pharmacokinetic prediction of 4-arylideneamino/cycloalkylidineamino 1, 2-naphthoquinone thiosemicarbazones.

机构信息

Department of Pharmaceutics, I.T., Banaras Hindu University , Varanasi, Uttar Pradesh , India.

出版信息

J Enzyme Inhib Med Chem. 2013 Dec;28(6):1192-8. doi: 10.3109/14756366.2012.721783. Epub 2012 Sep 14.

Abstract

In an attempt to develop potent anticancer agents, a series of 4-arylideneamino/cycloalkylidineamino-1, 2-naphthoquinone thiosemicarbazones were synthesized and characterized using FT-IR, (1)H NMR, (13)C NMR spectroscopy and elemental analysis. The compounds were screened for antiproliferative activity against three human cancer cell lines (Hep-G2, MG-63 and MCF-7) using the MTT assay. Significant anticancer activity was observed for several members of the series. The compounds 4-(3, 4, 5-trimethoxybenzylidene amino) 1, 2-naphthoquinone-2-thiosemicarbazone (TS10) and 4-(4-hydroxy-3-methoxy benzylideneamino) 1, 2-naphthoquinone-2-thiosemicarbazone (TS13) were active cytotoxic agents in all three cancer cell lines, with IC50 values in the range of 3.5-6.4 µM. Further evaluation of some of these potent cytotoxic compounds demonstrated their good safety profile in a normal cell line (MCF-12A). Docking experiments showed a good correlation between the predicted glide scores and the IC50 values of these compounds. In silico ADME studies revealed that these compounds can be used for second generation development.

摘要

为了开发有效的抗癌药物,我们合成并通过傅里叶变换红外光谱(FT-IR)、(1)H 核磁共振谱(1H NMR)、(13)C 核磁共振谱(13C NMR)和元素分析对一系列 4-芳亚氨基/环亚氨基-1,2-萘醌缩氨硫脲进行了结构表征。我们使用 MTT 法对这些化合物的三种人类癌细胞系(Hep-G2、MG-63 和 MCF-7)的增殖抑制活性进行了筛选。该系列的几种化合物表现出显著的抗癌活性。化合物 4-(3,4,5-三甲氧基苯亚甲基氨基)-1,2-萘醌-2-缩氨硫脲(TS10)和 4-(4-羟基-3-甲氧基苯亚甲基氨基)-1,2-萘醌-2-缩氨硫脲(TS13)对所有三种癌细胞系均具有有效的细胞毒性作用,IC50 值在 3.5-6.4 μM 范围内。对一些具有强大细胞毒性的化合物进行的进一步评估表明,它们在正常细胞系(MCF-12A)中具有良好的安全性特征。对接实验表明,这些化合物的预测 Glide 评分与 IC50 值之间存在良好的相关性。基于计算机的 ADME 研究表明,这些化合物可用于第二代开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验