Dept. Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Biomaterials. 2012 Dec;33(34):8812-21. doi: 10.1016/j.biomaterials.2012.08.051. Epub 2012 Sep 12.
Biomaterials for myocardial tissue engineering must balance structural, mechanical and bioactivity concerns. This work describes the interaction between HL-1 cardiomyocytes and a series of geometrically anisotropic collagen-GAG (CG) scaffolds with aligned tracks of ellipsoidal pores designed to mimic elements of the native geometric anisotropy of cardiac tissue. Here we report the role scaffold geometric anisotropy and pore size plays in directing cardiomyocyte bioactivity. Notably, HL-1 cardiomyocytes showed good proliferation and metabolic activity in all variants out to 14 days in culture. Critically, HL-1s exhibited significantly elevated 3D alignment and earlier spontaneous beating within anisotropic CG scaffolds relative to isotropic scaffold controls. This spontaneous beating occurred at significantly higher instances for larger pore size anisotropic variants. Gene expression and immunohistochemical analyses for key cardiac marker (α-myosin heavy chain, connexin-43) suggest that the isotropic and anisotropic scaffolds support expression of key transcriptomic markers of cardiomyocyte phenotype as well as the formation of gap junctions and elongated, aligned cell morphologies. Collectively, these results suggest that a geometrically anisotropic scaffold with sufficiently large pore size (>150 μm) provides a suitable microenvironment to induce cardiomyocyte alignment, beating, and bioactivity for cardiac tissue engineering applications.
用于心肌组织工程的生物材料必须平衡结构、力学和生物活性等方面的考虑。本工作描述了 HL-1 心肌细胞与一系列具有各向异性椭球孔的几何形状的胶原-GAG(CG)支架之间的相互作用,这些孔的设计旨在模拟心脏组织天然各向异性的特征。本研究报告了支架的几何各向异性和孔径在指导心肌细胞生物活性方面的作用。值得注意的是,HL-1 心肌细胞在培养的 14 天内,在所有变体中均表现出良好的增殖和代谢活性。至关重要的是,与各向同性支架对照相比,HL-1 在各向异性 CG 支架中表现出显著提高的 3D 排列和更早的自发性搏动。较大孔径各向异性变体中的自发性搏动出现的频率更高。关键心脏标志物(α-肌球蛋白重链、连接蛋白 43)的基因表达和免疫组织化学分析表明,各向同性和各向异性支架均支持心肌细胞表型的关键转录组标志物的表达,以及间隙连接和伸长、排列整齐的细胞形态的形成。总的来说,这些结果表明,具有足够大孔径(>150μm)的各向异性支架为诱导心肌细胞排列、搏动和生物活性提供了适合的微环境,可用于心脏组织工程应用。