Suppr超能文献

矿物质含量、基质排列及施加应变的梯度对胶原生物材料中人间充质干细胞形态的影响

The Effect of Gradations in Mineral Content, Matrix Alignment, and Applied Strain on Human Mesenchymal Stem Cell Morphology within Collagen Biomaterials.

作者信息

Mozdzen Laura C, Thorpe Stephen D, Screen Hazel R C, Harley Brendan A C

机构信息

University of Illinois, Chemical and Biomolecular Engineering, 600 S. Mathews St, Urbana, IL, 61801, USA.

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.

出版信息

Adv Healthc Mater. 2016 Jul;5(14):1731-9. doi: 10.1002/adhm.201600181. Epub 2016 Jun 1.

Abstract

The tendon-bone junction is a unique, mechanically dynamic, structurally graded anatomical zone, which transmits tensile loads between tendon and bone. Current surgical repair techniques rely on mechanical fixation and can result in high re-failure rates. A new class of collagen biomaterial that contains discrete mineralized and structurally aligned regions linked by a continuous interface to mimic the graded osteotendinous insertion has been recently described. Here the combined influence of graded biomaterial environment and increasing levels of applied strain (0%-20%) on mesenchymal stem cell (MSC) orientation and alignment have been reported. In osteotendinous scaffolds, which contain opposing gradients of mineral content and structural alignment characteristic of the native osteotendinous interface, MSC nuclear, and actin alignment is initially dictated by the local pore architecture, while applied tensile strain enhances cell alignment in the direction of strain. Comparatively, in layered scaffolds that do not contain any structural alignment cues, MSCs are randomly oriented in the unstrained condition, then become oriented in a direction perpendicular to applied strain. These findings provide an initial understanding of how scaffold architecture can provide significant, potentially competitive, feedback influencing MSC orientation under applied strain, and form the basis for future tissue engineering efforts to regenerate the osteotendinous enthesis.

摘要

肌腱-骨结合部是一个独特的、机械动力学的、结构分级的解剖区域,它在肌腱和骨之间传递拉伸载荷。目前的手术修复技术依赖于机械固定,可能导致较高的再次失败率。最近描述了一种新型胶原生物材料,其包含由连续界面连接的离散矿化和结构排列区域,以模拟分级的骨腱插入。本文报道了分级生物材料环境和增加的应用应变水平(0%-20%)对间充质干细胞(MSC)取向和排列的综合影响。在含有天然骨腱界面特征性矿物质含量和结构排列相反梯度的骨腱支架中,MSC细胞核和肌动蛋白排列最初由局部孔隙结构决定,而施加的拉伸应变会增强细胞在应变方向上的排列。相比之下,在不含任何结构排列线索的分层支架中,MSC在未受应变的条件下随机取向,然后在与施加应变垂直的方向上取向。这些发现初步了解了支架结构如何在施加应变的情况下提供显著的、潜在竞争性的反馈来影响MSC取向,并为未来再生骨腱结合部的组织工程努力奠定了基础。

相似文献

2
The influence of cyclic tensile strain on multi-compartment collagen-GAG scaffolds for tendon-bone junction repair.
Connect Tissue Res. 2019 Nov;60(6):530-543. doi: 10.1080/03008207.2019.1601183. Epub 2019 Apr 22.
6
Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage.
Acta Biomater. 2017 Sep 15;60:210-219. doi: 10.1016/j.actbio.2017.07.016. Epub 2017 Jul 11.
7
8
Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell-Laden Hydrogel Yarns.
Adv Healthc Mater. 2019 Apr;8(7):e1801218. doi: 10.1002/adhm.201801218. Epub 2019 Feb 6.

引用本文的文献

1
Mesenchymal stem cell activity across a graded scaffold-hydrogel composite biomaterial for tendon-to-bone enthesis repair.
Bioact Mater. 2025 Jul 15;53:287-299. doi: 10.1016/j.bioactmat.2025.07.017. eCollection 2025 Nov.
2
Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair.
Biomater Res. 2025 Jan 22;29:0132. doi: 10.34133/bmr.0132. eCollection 2025.
3
Viable tendon neotissue from adult adipose-derived multipotent stromal cells.
Front Bioeng Biotechnol. 2024 Jan 8;11:1290693. doi: 10.3389/fbioe.2023.1290693. eCollection 2023.
4
The Critical Role of The Piezo1/β-catenin/ATF4 Axis on The Stemness of Gli1 BMSCs During Simulated Microgravity-Induced Bone Loss.
Adv Sci (Weinh). 2023 Nov;10(32):e2303375. doi: 10.1002/advs.202303375. Epub 2023 Sep 27.
5
Inflammatory Licensed hMSCs Exhibit Enhanced Immunomodulatory Capacity in a Biomaterial Mediated Manner.
ACS Biomater Sci Eng. 2023 Aug 14;9(8):4916-4928. doi: 10.1021/acsbiomaterials.3c00290. Epub 2023 Jun 30.
7
8
Biomarkers for tissue engineering of the tendon-bone interface.
PLoS One. 2018 Jan 3;13(1):e0189668. doi: 10.1371/journal.pone.0189668. eCollection 2018.
10
Bioinspired Collagen Scaffolds in Cranial Bone Regeneration: From Bedside to Bench.
Adv Healthc Mater. 2017 Sep;6(17). doi: 10.1002/adhm.201700232. Epub 2017 Jun 6.

本文引用的文献

1
Bone regeneration and infiltration of an anisotropic composite scaffold: an experimental study of rabbit cranial defect repair.
J Biomater Sci Polym Ed. 2016;27(4):327-38. doi: 10.1080/09205063.2015.1128248. Epub 2016 Jan 17.
2
Cyclic Tensile Strain Induces Tenogenic Differentiation of Tendon-Derived Stem Cells in Bioreactor Culture.
Biomed Res Int. 2015;2015:790804. doi: 10.1155/2015/790804. Epub 2015 Jul 1.
4
Cyclic mechanical stimulation rescues achilles tendon from degeneration in a bioreactor system.
J Orthop Res. 2015 Dec;33(12):1888-96. doi: 10.1002/jor.22960. Epub 2015 Jul 17.
5
Mineralized collagen scaffolds induce hMSC osteogenesis and matrix remodeling.
Biomater Sci. 2015 Mar;3(3):533-42. doi: 10.1039/C4BM00397G.
7
Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate.
Acta Biomater. 2015 Jul;20:1-9. doi: 10.1016/j.actbio.2015.04.008. Epub 2015 Apr 11.
8
Incorporation of TGF-beta 3 within collagen-hyaluronic acid scaffolds improves their chondrogenic potential.
Adv Healthc Mater. 2015 Jun 3;4(8):1175-9. doi: 10.1002/adhm.201500053. Epub 2015 Mar 19.
9
Tenogenic Induction of Human MSCs by Anisotropically Aligned Collagen Biotextiles.
Adv Funct Mater. 2014 Sep 24;24(36):5762-5770. doi: 10.1002/adfm.201400828.
10
Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway.
Biomaterials. 2015 May;50:107-14. doi: 10.1016/j.biomaterials.2015.01.059. Epub 2015 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验