Suppr超能文献

Ragulator 是 Rag GTPases 的鸟苷酸交换因子 (GEF),可将氨基酸水平信号传递给 mTORC1。

Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1.

机构信息

Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, Nine Cambridge Center, Cambridge, MA 02142, USA.

出版信息

Cell. 2012 Sep 14;150(6):1196-208. doi: 10.1016/j.cell.2012.07.032.

Abstract

The mTOR Complex 1 (mTORC1) pathway regulates cell growth in response to numerous cues, including amino acids, which promote mTORC1 translocation to the lysosomal surface, its site of activation. The heterodimeric RagA/B-RagC/D GTPases, the Ragulator complex that tethers the Rags to the lysosome, and the v-ATPase form a signaling system that is necessary for amino acid sensing by mTORC1. Amino acids stimulate the binding of guanosine triphosphate to RagA and RagB but the factors that regulate Rag nucleotide loading are unknown. Here, we identify HBXIP and C7orf59 as two additional Ragulator components that are required for mTORC1 activation by amino acids. The expanded Ragulator has nucleotide exchange activity toward RagA and RagB and interacts with the Rag heterodimers in an amino acid- and v-ATPase-dependent fashion. Thus, we provide mechanistic insight into how mTORC1 senses amino acids by identifying Ragulator as a guanine nucleotide exchange factor (GEF) for the Rag GTPases.

摘要

mTOR 复合物 1(mTORC1)途径可响应多种信号(包括氨基酸)调节细胞生长,这些信号促进 mTORC1 易位到溶酶体表面,这是其激活的部位。 RagA/B-RagC/D GTP 酶的异源二聚体、将 Rag 与溶酶体连接的 Ragulator 复合物以及 v-ATP 酶形成了一个信号系统,该系统对于 mTORC1 对氨基酸的感应是必需的。氨基酸刺激 RagA 和 RagB 结合鸟嘌呤三磷酸(GTP),但调节 Rag 核苷酸加载的因素尚不清楚。在这里,我们确定 HBXIP 和 C7orf59 是 Ragulator 的另外两个组成部分,它们对于氨基酸激活 mTORC1 是必需的。扩展的 Ragulator 对 RagA 和 RagB 具有核苷酸交换活性,并以氨基酸和 v-ATP 酶依赖的方式与 Rag 异源二聚体相互作用。因此,我们通过鉴定 Ragulator 作为 Rag GTP 酶的鸟嘌呤核苷酸交换因子(GEF),为 mTORC1 通过识别氨基酸提供了机制见解。

相似文献

1
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1.
Cell. 2012 Sep 14;150(6):1196-208. doi: 10.1016/j.cell.2012.07.032.
2
Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9545-9550. doi: 10.1073/pnas.1811727115. Epub 2018 Sep 4.
3
Amino acids activate mammalian target of rapamycin (mTOR) complex 1 without changing Rag GTPase guanyl nucleotide charging.
J Biol Chem. 2014 Jan 31;289(5):2658-74. doi: 10.1074/jbc.M113.528505. Epub 2013 Dec 11.
4
Rag-Ragulator is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2322755121. doi: 10.1073/pnas.2322755121. Epub 2024 Aug 20.
6
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids.
Cell. 2010 Apr 16;141(2):290-303. doi: 10.1016/j.cell.2010.02.024. Epub 2010 Apr 8.
7
Disruption of the Rag-Ragulator Complex by c17orf59 Inhibits mTORC1.
Cell Rep. 2015 Sep 1;12(9):1445-55. doi: 10.1016/j.celrep.2015.07.052. Epub 2015 Aug 20.
9
The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
Mol Cell. 2013 Nov 21;52(4):495-505. doi: 10.1016/j.molcel.2013.09.016. Epub 2013 Oct 3.
10
Rag GTPase in amino acid signaling.
Amino Acids. 2016 Apr;48(4):915-928. doi: 10.1007/s00726-016-2171-x. Epub 2016 Jan 18.

引用本文的文献

1
mTOR Signaling in Macrophages: All Depends on the Context.
Int J Mol Sci. 2025 Aug 6;26(15):7598. doi: 10.3390/ijms26157598.
2
3
Rag GTPases control lysosomal acidification by regulating v-ATPase assembly in Drosophila.
J Biol Chem. 2025 Jul;301(7):110400. doi: 10.1016/j.jbc.2025.110400. Epub 2025 Jun 19.
4
The Molecular Basis of Amino Acids Sensing.
Adv Sci (Weinh). 2025 Jul;12(26):e2501889. doi: 10.1002/advs.202501889. Epub 2025 May 24.
6
Methods to Determine Lysosomal AMPK Activation.
Methods Mol Biol. 2025;2882:105-119. doi: 10.1007/978-1-0716-4284-9_5.
7
Lysosomal NKG7 restrains mTORC1 activity to promote CD8 T cell durability and tumor control.
Nat Commun. 2025 Feb 14;16(1):1628. doi: 10.1038/s41467-025-56931-6.
9
Hierarchical inhibition of mTORC1 by glucose starvation-triggered AXIN lysosomal translocation and by AMPK.
Life Metab. 2023 Mar 1;2(3):load005. doi: 10.1093/lifemeta/load005. eCollection 2023 Jun.
10
The role of serendipity in our investigation of embryo implantation.
Dev Biol. 2025 Apr;520:135-140. doi: 10.1016/j.ydbio.2025.01.010. Epub 2025 Jan 16.

本文引用的文献

3
Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation.
Genes Dev. 2011 Aug 15;25(16):1668-73. doi: 10.1101/gad.16968011. Epub 2011 Aug 4.
4
The 'invisible hand': regulation of RHO GTPases by RHOGDIs.
Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):493-504. doi: 10.1038/nrm3153.
5
Scaffold proteins: hubs for controlling the flow of cellular information.
Science. 2011 May 6;332(6030):680-6. doi: 10.1126/science.1198701.
6
mTOR couples cellular nutrient sensing to organismal metabolic homeostasis.
Trends Endocrinol Metab. 2011 Mar;22(3):94-102. doi: 10.1016/j.tem.2010.12.003. Epub 2011 Jan 25.
7
Role of Rab GTPases in membrane traffic and cell physiology.
Physiol Rev. 2011 Jan;91(1):119-49. doi: 10.1152/physrev.00059.2009.
8
The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold.
Nature. 2011 Jan 6;469(7328):107-11. doi: 10.1038/nature09593. Epub 2010 Dec 19.
9
mTOR: from growth signal integration to cancer, diabetes and ageing.
Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. doi: 10.1038/nrm3025. Epub 2010 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验