Li Mengqi, Wei Xiaoyan, Xiong Jinye, Feng Jin-Wei, Zhang Chen-Song, Lin Sheng-Cai
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
Life Metab. 2023 Mar 1;2(3):load005. doi: 10.1093/lifemeta/load005. eCollection 2023 Jun.
When glucose is replete, mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is active and anchored to the lysosomal surface via the two GTPases, Ras-related GTPase (RAG) and Ras homolog enriched in brain (Rheb), which are regulated by Ragulator and tuberous sclerosis complex 2 (TSC2), respectively. When glucose is low, aldolase senses low fructose-1,6-bisphosphate level and promotes the translocation of AXIN-liver kinase B1 (LKB1) to the lysosomal surface, which leads to the activation of AMP-activated protein kinase (AMPK) and the inhibition of RAGs, sundering mTORC1 from the lysosome and causing its inactivation. AMPK can also inactivate mTORC1 by phosphorylating Raptor and TSC2. However, the hierarchy of AXIN- and AMPK-mediated inhibition of mTORC1 remains poorly defined. Here, we show that AXIN translocation does not require AMPK expression or activity. In glucose starvation conditions, knockout of AXIN extended the half-life of mTORC1 inhibition from 15 to 60 min, whereas knockout of AMPK only extended it to 30 min. RAGB (constitutively active RAGB) almost entirely blocked the lysosomal dissociation and inhibition of mTORC1 under glucose starvation, but it did not inhibit AMPK, indicating that under these conditions, it is AXIN lysosomal translocation that inhibits mTORC1, and it does so via inhibition of RAGs. 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a mimetic of AMP, which activates both cytosolic AMPK and lysosomal AMPK, fully inhibited mTORC1 even when it is stably anchored to the lysosome by RAGB, whereas glucose starvation mildly inhibited such anchored mTORC1. Together, we demonstrate that the lysosomal translocation of AXIN plays a primary role in glucose starvation-triggered inhibition of mTORC1 by inhibiting RAGs, and that AMPK activity inhibits mTORC1 through phosphorylating Raptor and TSC2, especially under severe stress.
当葡萄糖充足时,哺乳动物雷帕霉素靶蛋白复合物1(mTORC1)处于活跃状态,并通过两种小GTP酶,即Ras相关GTP酶(RAG)和富含脑的Ras同源物(Rheb)锚定在溶酶体表面,这两种小GTP酶分别受Ragulator和结节性硬化复合物2(TSC2)的调控。当葡萄糖水平较低时,醛缩酶感知到低水平的果糖-1,6-二磷酸,并促进AXIN-肝脏激酶B1(LKB1)向溶酶体表面的转位,这导致AMP激活的蛋白激酶(AMPK)的激活以及RAGs的抑制,使mTORC1与溶酶体分离并导致其失活。AMPK还可通过磷酸化Raptor和TSC2使mTORC1失活。然而,AXIN和AMPK介导的对mTORC1的抑制层次仍不清楚。在此,我们表明AXIN的转位不需要AMPK的表达或活性。在葡萄糖饥饿条件下,敲除AXIN将mTORC1抑制的半衰期从15分钟延长至60分钟,而敲除AMPK仅将其延长至30分钟。RAGB(组成型活性RAGB)几乎完全阻断了葡萄糖饥饿条件下mTORC1的溶酶体解离和抑制,但它并不抑制AMPK,这表明在这些条件下,是AXIN的溶酶体转位抑制了mTORC1,并且它是通过抑制RAGs来实现的。5-氨基咪唑-4-甲酰胺核苷(AICAR),一种AMP的类似物,可激活胞质AMPK和溶酶体AMPK,即使当mTORC1通过RAGB稳定锚定在溶酶体上时,它也能完全抑制mTORC1,而葡萄糖饥饿对这种锚定的mTORC1只有轻微抑制作用。总之,我们证明AXIN的溶酶体转位在葡萄糖饥饿触发的通过抑制RAGs对mTORC1的抑制中起主要作用,并且AMPK活性通过磷酸化Raptor和TSC2来抑制mTORC1,尤其是在严重应激条件下。