Suppr超能文献

基于实验的模型模拟研究:人胎儿血红蛋白和成人血红蛋白的氧化脱硝机制及一氧化氮释放。

The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study.

机构信息

Department of Internal Medicine, University of Nebraska Medical Center, 984510 Nebraska Medical Center, Omaha, NE 68198-4510, USA.

出版信息

Blood Cells Mol Dis. 2013 Jan;50(1):8-19. doi: 10.1016/j.bcmd.2012.08.006. Epub 2012 Sep 13.

Abstract

Generation of unbound nitric oxide (NO) via the oxidative denitrosylation (ODN) mechanism is proposed to involve the simultaneous reaction of nitrite with oxy and deoxy hemoglobin (Hb(O2) (k1) and Hb (k13)) to yield respectively, *NO2 and Hb(+2)(NO). These two reaction pathways are coupled when *NO2 reacts with Hb(+2)(NO) to yield Hb(+3)(NO) (k22), a species that releases NO rapidly. Here, I have constructed an experimentally based molecular model of the ODN mechanism (k1-k31), focusing on the high nitrite reductase activity of R-state hemoglobin. This model was used to test the hypothesis that human fetal hemoglobin (HbF) can generate unbound NO faster and to a greater extent than HbA, consequent to a 25-fold larger value of k1, which was determined in an earlier study. The results show that despite the use of identical values for k22, there was a 44-fold larger apparent rate of reaction of *NO2 with HbF(NO) compared to HbA(NO), for reactions simulated at 410 μM nitrite and 100 μM hemoglobin (heme basis), 50% oxygen saturation at pH 7.4 and 37°C. This faster reaction was associated with the generation of about 11 μM peak unbound NO. In contrast, HbA failed to generate unbound NO rapidly under the same conditions. However, raising the concentration of nitrite into the millimolar range did generate unbound NO in the HbA simulation, in agreement with the experimental literature, and that result was associated with acceleration in the rate of reaction of NO2 with HbA(NO). Unbound NO could be generated at 410 μM nitrite in the HbA simulation by lowering the pH. This too was associated with an acceleration in the rate of reaction of NO2 with HbA(NO). Furthermore, generation of unbound NO could be assigned to the pH-dependent increase in k1, independent of the associated increase in k(13). Finally, selective exchange of the HbA value of k1 for the HbF value, keeping all other constants and conditions unchanged, generated kinetic patterns for the various species of the "k1-modified" HbA simulation, which were virtually indistinguishable from those seen in the HbF simulation. Taken together, these findings show that rapid and extensive generation of unbound NO within the ODN mechanism is controlled by the value of k1. The faster and more extensive generation of unbound NO by HbF at micromolar nitrite concentration suggests a possible second function for HbF in sickle cell disease, namely enhanced vasodilation. The failure of 410 μM nitrite to generate unbound NO in the HbA simulation at pH 7.4, contrasts with evidence in the literature showing that exposure of intact red cells to 100 to 200 μM nitrite in PBS, promoted NO release into the gas phase. I point out that this difference in outcome may be due to the higher activity of HbA when bound to the cytoplasmic domain of the red cell membrane anion transport protein SLC4A1 (band 3) and to the demonstrated capacity of band 3 to transport nitrite.

摘要

生成无束缚态的一氧化氮(NO)通过氧化脱亚硝酰基(ODN)机制,涉及亚硝酸盐与氧合和脱氧血红蛋白(Hb(O2)(k1)和 Hb(k13))的同时反应,分别生成NO2和 Hb(+2)(NO)。这两种反应途径是耦合的,当NO2与 Hb(+2)(NO)反应生成 Hb(+3)(NO)(k22)时,会释放出大量的 NO。在这里,我构建了一个基于实验的 ODN 机制(k1-k31)的分子模型,重点研究 R 态血红蛋白的高亚硝酸盐还原酶活性。该模型用于测试以下假设:与 HbA 相比,人胎儿血红蛋白(HbF)可以更快、更大程度地产生无束缚态的 NO,这归因于 k1 值大了 25 倍,该值在早期研究中已确定。结果表明,尽管在模拟中使用了相同的 k22 值,但与 HbA(NO)相比,*NO2与 HbF(NO)的反应的表观反应速率快了 44 倍,模拟条件为 410 μM 亚硝酸盐和 100 μM 血红蛋白(以血红素为基础),pH 值为 7.4,氧气饱和度为 50%,温度为 37°C。这种更快的反应与生成约 11 μM 的峰值无束缚态 NO 有关。相比之下,在相同条件下,HbA 未能快速产生无束缚态的 NO。然而,将亚硝酸盐浓度提高到毫摩尔范围会在 HbA 的模拟中产生无束缚态的 NO,这与实验文献一致,并且该结果与 NO2 与 HbA(NO)反应速率的加速有关。通过降低 pH 值,HbA 模拟中可以在 410 μM 的亚硝酸盐浓度下产生无束缚态的 NO。这也与 NO2 与 HbA(NO)反应速率的加速有关。此外,无束缚态的 NO 的生成可以归因于 pH 依赖性的 k1 值增加,而与相关的 k(13)增加无关。最后,保持所有其他常数和条件不变,将 HbA 的 k1 值选择性地替换为 HbF 的 k1 值,会生成“k1 修饰”HbA 模拟中各种物种的动力学模式,与 HbF 模拟中看到的几乎无法区分。综上所述,这些发现表明,ODN 机制中无束缚态的快速和广泛生成受到 k1 值的控制。在微摩尔亚硝酸盐浓度下,HbF 更快、更广泛地生成无束缚态的 NO,这表明 HbF 在镰状细胞病中可能具有第二种功能,即增强血管扩张。在 pH 值为 7.4 时,HbA 模拟中 410 μM 亚硝酸盐未能生成无束缚态的 NO,这与文献中的证据形成对比,文献表明,将完整的红细胞暴露于 PBS 中的 100 至 200 μM 亚硝酸盐中会促进 NO 释放到气相中。我指出,这种结果差异可能是由于 HbA 与红细胞膜阴离子转运蛋白 SLC4A1(带 3)的细胞质结构域结合时的更高活性以及带 3 证明的转运亚硝酸盐的能力所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验