Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
Toxicol Appl Pharmacol. 2012 Dec 15;265(3):316-24. doi: 10.1016/j.taap.2012.08.032. Epub 2012 Sep 7.
Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B-A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A-B) and B-A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin.
大黄素是一种生物利用度较差但很有前途的植物来源抗癌药物候选物。大黄素的口服生物利用度低是由于其在肠道和肝脏中广泛的葡萄糖醛酸化。本研究采用 Caco-2 细胞培养模型,研究肠道大黄素处置过程中 UDP-葡萄糖醛酸转移酶(UGTs)与外排转运体之间的相互作用。采用 Caco-2 单层细胞,在有无多药耐药相关蛋白(MRP)和乳腺癌耐药蛋白(BCRP)外排转运体化学抑制剂的情况下,对不同浓度的大黄素进行双向转运实验。测定了 Caco-2 单层细胞中大黄素及其葡萄糖醛酸化物的双向通透性。大黄素在 Caco-2 细胞中迅速代谢为大黄素葡萄糖醛酸化物。LTC4(MRP2 的强抑制剂)降低了大黄素葡萄糖醛酸化物的外排,也显著增加了基底外侧到顶端(B-A)方向的细胞内葡萄糖醛酸化物水平。MRP2、MRP3 和 MRP4 的化学抑制剂 MK-571 显著降低了葡萄糖醛酸化物在顶端到基底外侧(A-B)和 B-A 方向的外排,且呈剂量依赖性。然而,BCRP 的化学抑制剂双嘧达莫对 Caco-2 细胞中大黄素葡萄糖醛酸化物的形成和外排没有影响。结论:UGT 是肠道中大黄素的主要代谢途径,而 MRP 家族是负责肠道中大黄素葡萄糖醛酸化物排泄的主要外排转运体。UGTs 和 MRP 外排转运体的偶联导致大黄素的广泛代谢、排泄和低生物利用度。