Suppr超能文献

利用同步辐射 X 射线散射技术研究人类皮质骨中矿物晶体在压缩载荷下的原位力学行为。

In situ mechanical behavior of mineral crystals in human cortical bone under compressive load using synchrotron X-ray scattering techniques.

机构信息

Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.

出版信息

J Mech Behav Biomed Mater. 2012 Oct;14:101-12. doi: 10.1016/j.jmbbm.2012.05.003. Epub 2012 May 23.

Abstract

It is of great interest to delineate the effect of orientation distribution of mineral crystals on the bulk mechanical behavior of bone. Using a unique synergistic approach combining a progressive loading scheme and synchrotron X-ray scattering techniques, human cortical bone specimens were tested in compression to examine the in situ mechanical behavior of mineral crystals aligned in different orientations. The orientation distribution was quantitatively estimated by measuring the X-ray diffraction intensity from the (002) plane in mineral crystals. In addition, the average longitudinal (c-axis), transverse (a-axis), and shear strains of the subset of mineral crystals aligned in each orientation were determined by measuring the lattice deformation normal to three distinct crystallographic planes (i.e. 002, 310, and 213) in the crystals. The experimental results indicated that the in situ strain and stress of mineral crystals varied with orientations. The normal strain and stress in the longitudinally aligned mineral crystals were markedly greater than those in the transversely oriented crystals, whereas the shear stress reached a maximum for the crystals aligned in ±30° with respect to the loading direction. The maximum principal strain and stress were observed in the mineral crystals oriented along the loading axis, with a similar trend observed in the maximum shear strain and stress. By examining the in situ behavior, the contribution of mineral crystals to load bearing and the bulk behavior of bone are discussed.

摘要

阐明矿物晶体取向分布对骨整体力学性能的影响具有重要意义。本研究采用独特的协同方法,结合渐进加载方案和同步辐射 X 射线散射技术,对人皮质骨标本进行压缩试验,以研究不同取向排列的矿物晶体的原位力学行为。通过测量矿物晶体(002)面上的 X 射线衍射强度,定量估计了取向分布。此外,通过测量晶体中三个不同晶面(即 002、310 和 213)上晶格的变形,确定了每个取向排列的矿物晶体子集的平均纵向(c 轴)、横向(a 轴)和剪切应变。实验结果表明,矿物晶体的原位应变和应力随取向而变化。纵向排列的矿物晶体的法向应变和应力明显大于横向排列的晶体,而剪切应力在相对于加载方向成±30°排列的晶体中达到最大值。在沿加载轴取向的矿物晶体中观察到最大主应变和应力,最大剪切应变和应力也呈现出类似的趋势。通过原位行为的研究,讨论了矿物晶体对承载和骨整体行为的贡献。

相似文献

1
In situ mechanical behavior of mineral crystals in human cortical bone under compressive load using synchrotron X-ray scattering techniques.
J Mech Behav Biomed Mater. 2012 Oct;14:101-12. doi: 10.1016/j.jmbbm.2012.05.003. Epub 2012 May 23.
2
Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques.
J Biomech. 2011 Feb 24;44(4):676-82. doi: 10.1016/j.jbiomech.2010.11.003. Epub 2010 Nov 26.
3
Effect of water on nanomechanics of bone is different between tension and compression.
J Mech Behav Biomed Mater. 2016 Apr;57:128-38. doi: 10.1016/j.jmbbm.2015.12.001. Epub 2015 Dec 12.
4
Orientation and deformation of mineral crystals in tooth surfaces.
J Mech Behav Biomed Mater. 2012 Jun;10:176-82. doi: 10.1016/j.jmbbm.2012.02.025. Epub 2012 Mar 15.
6
Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction.
Acta Biomater. 2008 Nov;4(6):1677-87. doi: 10.1016/j.actbio.2008.05.008. Epub 2008 May 27.
7
Deformation of mineral crystals in cortical bone depending on structural anisotropy.
Bone. 2009 Jun;44(6):1111-20. doi: 10.1016/j.bone.2009.01.394.
8
Relationship between bone tissue strain and lattice strain of HAp crystals in bovine cortical bone under tensile loading.
J Biomech. 2007;40(8):1832-8. doi: 10.1016/j.jbiomech.2006.07.003. Epub 2006 Oct 31.
9
Nanostructure and elastic modulus of single trabecula in bovine cancellous bone.
J Biomech. 2014 Nov 7;47(14):3482-7. doi: 10.1016/j.jbiomech.2014.09.009. Epub 2014 Sep 21.

引用本文的文献

1
An improved interfacial bonding model for material interface modeling.
Eng Fract Mech. 2017 Jan;169:276-291. doi: 10.1016/j.engfracmech.2016.10.015. Epub 2016 Oct 26.
2
Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model.
J Mech Behav Biomed Mater. 2017 Jan;65:224-235. doi: 10.1016/j.jmbbm.2016.08.027. Epub 2016 Aug 26.
3
The Mineral-Collagen Interface in Bone.
Calcif Tissue Int. 2015 Sep;97(3):262-80. doi: 10.1007/s00223-015-9984-6. Epub 2015 Apr 1.
4
Evaluating bone quality in patients with chronic kidney disease.
Nat Rev Nephrol. 2013 Nov;9(11):671-80. doi: 10.1038/nrneph.2013.198. Epub 2013 Oct 8.

本文引用的文献

2
Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques.
J Biomech. 2011 Feb 24;44(4):676-82. doi: 10.1016/j.jbiomech.2010.11.003. Epub 2010 Nov 26.
3
Lattice strains and load partitioning in bovine trabecular bone.
Acta Biomater. 2011 Feb;7(2):716-23. doi: 10.1016/j.actbio.2010.10.007. Epub 2010 Oct 15.
5
Spiral twisting of fiber orientation inside bone lamellae.
Biointerphases. 2006 Mar;1(1):1. doi: 10.1116/1.2178386.
6
Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
J Mech Behav Biomed Mater. 2009 Dec;2(6):613-9. doi: 10.1016/j.jmbbm.2008.11.008. Epub 2008 Dec 13.
7
Specimen-specific multi-scale model for the anisotropic elastic constants of human cortical bone.
J Biomech. 2009 Sep 18;42(13):2061-7. doi: 10.1016/j.jbiomech.2009.06.002. Epub 2009 Aug 6.
8
Deformation of mineral crystals in cortical bone depending on structural anisotropy.
Bone. 2009 Jun;44(6):1111-20. doi: 10.1016/j.bone.2009.01.394.
9
Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups.
J Biomech. 2009 Mar 11;42(4):491-7. doi: 10.1016/j.jbiomech.2008.11.016. Epub 2009 Jan 17.
10
Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction.
Acta Biomater. 2008 Nov;4(6):1677-87. doi: 10.1016/j.actbio.2008.05.008. Epub 2008 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验