Suppr超能文献

相似文献

1
Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups.
J Biomech. 2009 Mar 11;42(4):491-7. doi: 10.1016/j.jbiomech.2008.11.016. Epub 2009 Jan 17.
2
Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
J Mech Behav Biomed Mater. 2009 Dec;2(6):613-9. doi: 10.1016/j.jmbbm.2008.11.008. Epub 2008 Dec 13.
3
Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups.
J Biomed Mater Res A. 2009 May;89(2):521-9. doi: 10.1002/jbm.a.31974.
4
Age-related factors affecting the postyield energy dissipation of human cortical bone.
J Orthop Res. 2007 May;25(5):646-55. doi: 10.1002/jor.20337.
5
Orientation dependence of progressive post-yield behavior of human cortical bone in compression.
J Biomech. 2012 Nov 15;45(16):2829-34. doi: 10.1016/j.jbiomech.2012.08.034. Epub 2012 Sep 17.
6
Progressive post-yield behavior of human cortical bone in shear.
Bone. 2013 Mar;53(1):1-5. doi: 10.1016/j.bone.2012.11.029. Epub 2012 Dec 4.
7
A novel approach to assess post-yield energy dissipation of bone in tension.
J Biomech. 2007;40(3):674-7. doi: 10.1016/j.jbiomech.2006.02.002.
8
Quantitative relationships between microdamage and cancellous bone strength and stiffness.
Bone. 2014 Sep;66:205-13. doi: 10.1016/j.bone.2014.05.023. Epub 2014 Jun 11.
9
Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques.
J Biomech. 2011 Feb 24;44(4):676-82. doi: 10.1016/j.jbiomech.2010.11.003. Epub 2010 Nov 26.
10
Structural and Mechanical Improvements to Bone Are Strain Dependent with Axial Compression of the Tibia in Female C57BL/6 Mice.
PLoS One. 2015 Jun 26;10(6):e0130504. doi: 10.1371/journal.pone.0130504. eCollection 2015.

引用本文的文献

1
Bone collagen tensile properties of the aging human proximal femur.
Bone Rep. 2024 May 13;21:101773. doi: 10.1016/j.bonr.2024.101773. eCollection 2024 Jun.
4
A two-layer elasto-visco-plastic rheological model for the material parameter identification of bone tissue.
Biomech Model Mechanobiol. 2020 Dec;19(6):2149-2162. doi: 10.1007/s10237-020-01329-0. Epub 2020 May 6.
5
Post-yield and failure properties of cortical bone.
Bonekey Rep. 2016 Aug 24;5:829. doi: 10.1038/bonekey.2016.60. eCollection 2016.
6
Damage in total knee replacements from mechanical overload.
J Biomech. 2016 Jul 5;49(10):2068-2075. doi: 10.1016/j.jbiomech.2016.05.014. Epub 2016 May 20.
7
Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone.
Bone. 2014 Feb;59:199-206. doi: 10.1016/j.bone.2013.11.018. Epub 2013 Nov 27.
9
Progressive post-yield behavior of human cortical bone in shear.
Bone. 2013 Mar;53(1):1-5. doi: 10.1016/j.bone.2012.11.029. Epub 2012 Dec 4.
10
Orientation dependence of progressive post-yield behavior of human cortical bone in compression.
J Biomech. 2012 Nov 15;45(16):2829-34. doi: 10.1016/j.jbiomech.2012.08.034. Epub 2012 Sep 17.

本文引用的文献

1
The effect of recovery time and test conditions on viscoelastic measures of tensile damage in cortical bone.
J Biomech. 2007;40(12):2731-7. doi: 10.1016/j.jbiomech.2007.01.005. Epub 2007 Apr 5.
3
Age-related factors affecting the postyield energy dissipation of human cortical bone.
J Orthop Res. 2007 May;25(5):646-55. doi: 10.1002/jor.20337.
4
A biomechanical perspective on bone quality.
Bone. 2006 Dec;39(6):1173-81. doi: 10.1016/j.bone.2006.06.001. Epub 2006 Jul 28.
6
The effect of damage on the viscoelastic behavior of human vertebral trabecular bone.
J Biomech Eng. 2006 Aug;128(4):473-80. doi: 10.1115/1.2205370.
7
A novel approach to assess post-yield energy dissipation of bone in tension.
J Biomech. 2007;40(3):674-7. doi: 10.1016/j.jbiomech.2006.02.002.
8
Damage in trabecular bone at small strains.
Eur J Morphol. 2005 Feb-Apr;42(1-2):13-21. doi: 10.1080/09243860500095273.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验