Suppr超能文献

土壤栖居阿米巴对炭疽孢子的萌发和扩增。

Germination and amplification of anthrax spores by soil-dwelling amoebas.

机构信息

Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA.

出版信息

Appl Environ Microbiol. 2012 Nov;78(22):8075-81. doi: 10.1128/AEM.02034-12. Epub 2012 Sep 14.

Abstract

While anthrax is typically associated with bioterrorism, in many parts of the world the anthrax bacillus (Bacillus anthracis) is endemic in soils, where it causes sporadic disease in livestock. These soils are typically rich in organic matter and calcium that promote survival of resilient B. anthracis spores. Outbreaks of anthrax tend to occur in warm weather following rains that are believed to concentrate spores in low-lying areas where runoff collects. It has been concluded that elevated spore concentrations are not the result of vegetative growth as B. anthracis competes poorly against indigenous bacteria. Here, we test an alternative hypothesis in which amoebas, common in moist soils and pools of standing water, serve as amplifiers of B. anthracis spores by enabling germination and intracellular multiplication. Under simulated environmental conditions, we show that B. anthracis germinates and multiplies within Acanthamoeba castellanii. The growth kinetics of a fully virulent B. anthracis Ames strain (containing both the pX01 and pX02 virulence plasmids) and vaccine strain Sterne (containing only pX01) inoculated as spores in coculture with A. castellanii showed a nearly 50-fold increase in spore numbers after 72 h. In contrast, the plasmidless strain 9131 showed little growth, demonstrating that plasmid pX01 is essential for growth within A. castellanii. Electron and time-lapse fluorescence microscopy revealed that spores germinate within amoebal phagosomes, vegetative bacilli undergo multiplication, and, following demise of the amoebas, bacilli sporulate in the extracellular milieu. This analysis supports our hypothesis that amoebas contribute to the persistence and amplification of B. anthracis in natural environments.

摘要

虽然炭疽通常与生物恐怖主义有关,但在世界许多地区,炭疽杆菌(Bacillus anthracis)在土壤中流行,在那里它会导致牲畜中出现散发性疾病。这些土壤通常富含有机物和钙,有利于具有弹性的炭疽杆菌孢子的存活。炭疽病爆发往往发生在温暖天气之后的降雨中,据信降雨会将孢子集中在地势较低的地区,那里的径流会聚集。人们得出的结论是,由于炭疽杆菌与本地细菌竞争能力差,因此不会导致营养体生长而导致孢子浓度升高。在这里,我们检验了一个替代假设,即在潮湿土壤和静水池塘中常见的变形虫通过促进孢子萌发和细胞内繁殖,充当炭疽杆菌孢子的放大器。在模拟的环境条件下,我们表明炭疽杆菌在粘球菌(Acanthamoeba castellanii)中萌发和繁殖。完全毒力的炭疽杆菌 Ames 株(含有 pX01 和 pX02 两种毒力质粒)和疫苗株 Sterne(仅含有 pX01)作为孢子接种在与粘球菌共培养物中,其生长动力学显示在 72 小时后孢子数量增加了近 50 倍。相比之下,无质粒株 9131 的生长很少,表明质粒 pX01 对于在粘球菌内生长是必不可少的。电子和延时荧光显微镜显示,孢子在变形虫吞噬泡内萌发,营养体细菌进行繁殖,并且在变形虫死亡后,细菌在细胞外环境中形成孢子。该分析支持我们的假设,即变形虫有助于炭疽杆菌在自然环境中的持续存在和扩增。

相似文献

1
Germination and amplification of anthrax spores by soil-dwelling amoebas.
Appl Environ Microbiol. 2012 Nov;78(22):8075-81. doi: 10.1128/AEM.02034-12. Epub 2012 Sep 14.
5
Inactivation of Bacillus anthracis spores in murine primary macrophages.
Cell Microbiol. 2006 Oct;8(10):1634-42. doi: 10.1111/j.1462-5822.2006.00738.x.
7
Temporal dynamics in microbial soil communities at anthrax carcass sites.
BMC Microbiol. 2017 Sep 26;17(1):206. doi: 10.1186/s12866-017-1111-6.
9
Does environmental replication contribute to Bacillus anthracis spore persistence and infectivity in soil?
Res Microbiol. 2023 Jun;174(5):104052. doi: 10.1016/j.resmic.2023.104052. Epub 2023 Mar 14.
10
Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms.
J Appl Microbiol. 2014 Nov;117(5):1274-82. doi: 10.1111/jam.12620. Epub 2014 Sep 13.

引用本文的文献

1
Acanthamoeba spp.: Neglected Protists in Veterinary Medicine.
Acta Parasitol. 2025 Apr 10;70(2):87. doi: 10.1007/s11686-025-01023-0.
2
Risk factors associated with cutaneous anthrax outbreaks in humans in Bangladesh.
Front Public Health. 2024 Oct 15;12:1442937. doi: 10.3389/fpubh.2024.1442937. eCollection 2024.
3
New Insights into the Phylogeny of the A.Br.161 ("A.Br.Heroin") Clade of .
Pathogens. 2024 Jul 16;13(7):593. doi: 10.3390/pathogens13070593.
4
Animal, human, and environmental perspectives on anthrax in Bangladesh.
Heliyon. 2023 Dec 9;10(1):e23481. doi: 10.1016/j.heliyon.2023.e23481. eCollection 2024 Jan 15.
5
Biological characteristics and pathogenicity of .
Front Microbiol. 2023 Apr 5;14:1147077. doi: 10.3389/fmicb.2023.1147077. eCollection 2023.
8
Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens.
Toxins (Basel). 2021 Jul 28;13(8):526. doi: 10.3390/toxins13080526.
9
Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens.
Int Microbiol. 2021 Nov;24(4):559-571. doi: 10.1007/s10123-021-00192-y. Epub 2021 Aug 8.
10
War of the microbial world: Acanthamoeba spp. interactions with microorganisms.
Folia Microbiol (Praha). 2021 Oct;66(5):689-699. doi: 10.1007/s12223-021-00889-7. Epub 2021 Jun 18.

本文引用的文献

1
Differential contribution of Bacillus anthracis toxins to pathogenicity in two animal models.
Infect Immun. 2012 Aug;80(8):2623-31. doi: 10.1128/IAI.00244-12. Epub 2012 May 14.
3
Role of the gerP operon in germination and outgrowth of Bacillus anthracis spores.
PLoS One. 2010 Feb 9;5(2):e9128. doi: 10.1371/journal.pone.0009128.
4
The role of Bacillus anthracis germinant receptors in germination and virulence.
Mol Microbiol. 2010 Jan;75(2):365-75. doi: 10.1111/j.1365-2958.2009.06972.x. Epub 2009 Nov 25.
5
The ecology of Bacillus anthracis.
Mol Aspects Med. 2009 Dec;30(6):356-67. doi: 10.1016/j.mam.2009.08.003. Epub 2009 Aug 29.
6
8
Interactions of some common pathogenic bacteria with Acanthamoeba polyphaga.
FEMS Microbiol Lett. 2008 May;282(2):258-65. doi: 10.1111/j.1574-6968.2008.01123.x. Epub 2008 Apr 9.
10
Primary involvement of pharynx and peyer's patch in inhalational and intestinal anthrax.
PLoS Pathog. 2007 Jun;3(6):e76. doi: 10.1371/journal.ppat.0030076.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验