Suppr超能文献

14-3-3ε 和 14-3-3σ 抑制 Toll 样受体 (TLR) 介导的促炎细胞因子诱导。

14-3-3ε and 14-3-3σ inhibit Toll-like receptor (TLR)-mediated proinflammatory cytokine induction.

机构信息

Immune Signaling Group, Institute of Immunology, Department of Biology, National University of Ireland Maynooth, County Kildare, Ireland.

出版信息

J Biol Chem. 2012 Nov 9;287(46):38665-79. doi: 10.1074/jbc.M112.367490. Epub 2012 Sep 14.

Abstract

Toll-like receptors (TLRs) are a group of pattern recognition receptors that play a crucial role in the induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral double-stranded RNA. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling is essential. Limited studies have applied proteomics toward understanding the dynamics of TLR signaling. Herein, a proteomics approach identified 14-3-3ε and 14-3-3σ proteins as new members of the TLR signaling complex. Toward the functional characterization of 14-3-3ε and 14-3-3σ in TLR signaling, we have shown that both of these proteins impair TLR2, TLR3, TLR4, TLR7/8, and TLR9 ligand-induced IL-6, TNFα, and IFN-β production. We also show that 14-3-3ε and 14-3-3σ impair TLR2-, TLR3-, TLR4-, TLR7/8-, and TLR9-mediated NF-κB and IFN-β reporter gene activity. Interestingly, although the 14-3-3 proteins inhibit poly(I:C)-mediated RANTES production, 14-3-3 proteins augment Pam(3)CSK(4), LPS, R848, and CpG-mediated production of RANTES (regulated on activation normal T cell expressed and secreted) in a Mal (MyD88 adaptor-like)/MyD88-dependent manner. 14-3-3ε and 14-3-3σ also bind to the TLR adaptors and to both TRAF3 and TRAF6. Our study conclusively shows that 14-3-3ε and 14-3-3σ play a major regulatory role in balancing the host inflammatory response to viral and bacterial infections through modulation of the TLR signaling pathway. Thus, manipulation of 14-3-3 proteins may represent novel therapeutic targets for inflammatory conditions and infections.

摘要

toll 样受体 (TLRs) 是一组模式识别受体,在诱导针对细菌和病毒感染的固有免疫反应中发挥关键作用。TLR3 已成为病毒双链 RNA 的关键传感器。因此,更清楚地了解调节 TLR3 信号的生物学过程至关重要。有限的研究应用蛋白质组学来理解 TLR 信号的动态。在此,蛋白质组学方法鉴定出 14-3-3ε 和 14-3-3σ 蛋白作为 TLR 信号复合物的新成员。为了对 TLR 信号中 14-3-3ε 和 14-3-3σ 的功能进行表征,我们已经表明,这两种蛋白质均损害 TLR2、TLR3、TLR4、TLR7/8 和 TLR9 配体诱导的 IL-6、TNFα 和 IFN-β 的产生。我们还表明,14-3-3ε 和 14-3-3σ 损害 TLR2、TLR3、TLR4、TLR7/8 和 TLR9 介导的 NF-κB 和 IFN-β 报告基因活性。有趣的是,尽管 14-3-3 蛋白抑制 poly(I:C) 介导的 RANTES 产生,但 14-3-3 蛋白以 Mal(MyD88 适配器样)/MyD88 依赖性方式增强 Pam(3)CSK(4)、LPS、R848 和 CpG 介导的 RANTES(激活正常 T 细胞表达和分泌的调节物)的产生。14-3-3ε 和 14-3-3σ 还与 TLR 衔接子以及 TRAF3 和 TRAF6 结合。我们的研究结论表明,14-3-3ε 和 14-3-3σ 通过调节 TLR 信号通路,在平衡宿主对病毒和细菌感染的炎症反应方面发挥主要调节作用。因此,操纵 14-3-3 蛋白可能代表炎症和感染的新型治疗靶点。

相似文献

1
14-3-3ε and 14-3-3σ inhibit Toll-like receptor (TLR)-mediated proinflammatory cytokine induction.
J Biol Chem. 2012 Nov 9;287(46):38665-79. doi: 10.1074/jbc.M112.367490. Epub 2012 Sep 14.
2
Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-β and RANTES production.
J Immunol. 2011 Feb 15;186(4):2514-22. doi: 10.4049/jimmunol.1003093. Epub 2011 Jan 19.
3
TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by ADAM15.
J Immunol. 2013 Mar 1;190(5):2217-28. doi: 10.4049/jimmunol.1201630. Epub 2013 Jan 30.
4
TLR3-mediated IFN-β gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like.
Eur J Immunol. 2010 Nov;40(11):3150-60. doi: 10.1002/eji.201040547. Epub 2010 Oct 19.
5
Differential induction of MyD88- and TRIF-dependent pathways in equine monocytes by Toll-like receptor agonists.
Vet Immunol Immunopathol. 2009 Jan 15;127(1-2):125-34. doi: 10.1016/j.vetimm.2008.09.028. Epub 2008 Oct 11.
8
Combined CpG and poly I:C stimulation of monocytes results in unique signaling activation not observed with the individual ligands.
Cell Signal. 2013 Nov;25(11):2246-54. doi: 10.1016/j.cellsig.2013.07.014. Epub 2013 Jul 19.
10
TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain.
Eur J Pharmacol. 2008 Apr 14;584(1):40-8. doi: 10.1016/j.ejphar.2008.01.026. Epub 2008 Feb 5.

引用本文的文献

2
Risk factors for inhibitors in hemophilia A based on RNA-seq and DNA methylation.
Res Pract Thromb Haemost. 2022 Sep 5;6(6):e12794. doi: 10.1002/rth2.12794. eCollection 2022 Aug.
3
Molecular characterisation, expression and functional feature of TRAF6 in the King pigeon ().
Innate Immun. 2020 Aug;26(6):490-504. doi: 10.1177/1753425920920930. Epub 2020 May 11.
4
A Structure-Informed Atlas of Human-Virus Interactions.
Cell. 2019 Sep 5;178(6):1526-1541.e16. doi: 10.1016/j.cell.2019.08.005. Epub 2019 Aug 29.
6
Cerebrospinal Fluid Concentrations of Neuronal Proteins Are Reduced in Primary Angiitis of the Central Nervous System.
Front Neurol. 2018 Jun 5;9:407. doi: 10.3389/fneur.2018.00407. eCollection 2018.
7
Recombinant protein of small GTPase ADP-ribosylation factor 1 (HcARF1) modulate the cell mediated immune response .
Oncotarget. 2017 Nov 26;8(68):112211-112221. doi: 10.18632/oncotarget.22662. eCollection 2017 Dec 22.
9
Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis.
Virulence. 2016;7(2):72-84. doi: 10.1080/21505594.2015.1122166. Epub 2015 Dec 8.
10
Role of glial 14-3-3 gamma protein in autoimmune demyelination.
J Neuroinflammation. 2015 Oct 6;12:187. doi: 10.1186/s12974-015-0381-x.

本文引用的文献

1
Regulation of CCL5 expression in smooth muscle cells following arterial injury.
PLoS One. 2012;7(1):e30873. doi: 10.1371/journal.pone.0030873. Epub 2012 Jan 23.
3
14-3-3 proteins as potential therapeutic targets.
Semin Cell Dev Biol. 2011 Sep;22(7):705-12. doi: 10.1016/j.semcdb.2011.09.012. Epub 2011 Oct 1.
4
Cytosolic DNA sensors regulating type I interferon induction.
Trends Immunol. 2011 Dec;32(12):574-81. doi: 10.1016/j.it.2011.08.004. Epub 2011 Sep 21.
5
Identification and functional characterization of 14-3-3 in TLR2 signaling.
J Proteome Res. 2011 Oct 7;10(10):4661-70. doi: 10.1021/pr200461p. Epub 2011 Aug 26.
6
Toll-like receptor, RIG-I-like receptors and the NLRP3 inflammasome: key modulators of innate immune responses to double-stranded RNA viruses.
Cytokine Growth Factor Rev. 2011 Apr;22(2):63-72. doi: 10.1016/j.cytogfr.2011.02.001. Epub 2011 Apr 3.
7
Absence of MyD88 results in enhanced TLR3-dependent phosphorylation of IRF3 and increased IFN-β and RANTES production.
J Immunol. 2011 Feb 15;186(4):2514-22. doi: 10.4049/jimmunol.1003093. Epub 2011 Jan 19.
8
TLR3-mediated IFN-β gene induction is negatively regulated by the TLR adaptor MyD88 adaptor-like.
Eur J Immunol. 2010 Nov;40(11):3150-60. doi: 10.1002/eji.201040547. Epub 2010 Oct 19.
9
The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis.
Nat Rev Rheumatol. 2010 Nov;6(11):625-35. doi: 10.1038/nrrheum.2010.159. Epub 2010 Oct 5.
10
A critical function of toll-like receptor-3 in the induction of anti-human immunodeficiency virus activities in macrophages.
Immunology. 2010 Sep;131(1):40-9. doi: 10.1111/j.1365-2567.2010.03270.x. Epub 2010 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验