Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
Department of Systems Biology, Columbia University Medical Center, New York, NY, USA.
Cell. 2019 Sep 5;178(6):1526-1541.e16. doi: 10.1016/j.cell.2019.08.005. Epub 2019 Aug 29.
While knowledge of protein-protein interactions (PPIs) is critical for understanding virus-host relationships, limitations on the scalability of high-throughput methods have hampered their identification beyond a number of well-studied viruses. Here, we implement an in silico computational framework (pathogen host interactome prediction using structure similarity [P-HIPSTer]) that employs structural information to predict ∼282,000 pan viral-human PPIs with an experimental validation rate of ∼76%. In addition to rediscovering known biology, P-HIPSTer has yielded a series of new findings: the discovery of shared and unique machinery employed across human-infecting viruses, a likely role for ZIKV-ESR1 interactions in modulating viral replication, the identification of PPIs that discriminate between human papilloma viruses (HPVs) with high and low oncogenic potential, and a structure-enabled history of evolutionary selective pressure imposed on the human proteome. Further, P-HIPSTer enables discovery of previously unappreciated cellular circuits that act on human-infecting viruses and provides insight into experimentally intractable viruses.
虽然蛋白质-蛋白质相互作用 (PPIs) 的知识对于理解病毒-宿主关系至关重要,但高通量方法的可扩展性限制了它们的识别,除了一些研究得很好的病毒之外。在这里,我们实施了一种计算框架(使用结构相似性预测病原体 - 宿主相互作用组 [P-HIPSTer]),该框架利用结构信息预测了约 282,000 种泛病毒 - 人类 PPI,实验验证率约为 76%。除了重新发现已知的生物学之外,P-HIPSTer 还产生了一系列新的发现:发现了人类感染病毒中使用的共享和独特的机制,ZIKV-ESR1 相互作用可能在调节病毒复制中发挥作用,鉴定了能够区分高致癌潜能和低致癌潜能的人类乳头瘤病毒 (HPV) 的 PPI,以及对人类蛋白质组施加的进化选择压力的结构启用历史。此外,P-HIPSTer 能够发现以前未被重视的作用于人类感染病毒的细胞回路,并深入了解实验上难以处理的病毒。