Suppr超能文献

保证图像分割迭代倾斜投票算法的收敛性

Guaranteeing Convergence of Iterative Skewed Voting Algorithms for Image Segmentation.

作者信息

Balcan Doru C, Srinivasa Gowri, Fickus Matthew, Kovačević Jelena

机构信息

School of Interactive Computing, Georgia Institute of Technology, Atlanta, USA.

出版信息

Appl Comput Harmon Anal. 2012 Sep 1;33(2):300-308. doi: 10.1016/j.acha.2012.03.008.

Abstract

In this paper we provide rigorous proof for the convergence of an iterative voting-based image segmentation algorithm called Active Masks. Active Masks (AM) was proposed to solve the challenging task of delineating punctate patterns of cells from fluorescence microscope images. Each iteration of AM consists of a linear convolution composed with a nonlinear thresholding; what makes this process special in our case is the presence of additive terms whose role is to "skew" the voting when prior information is available. In real-world implementation, the AM algorithm always converges to a fixed point. We study the behavior of AM rigorously and present a proof of this convergence. The key idea is to formulate AM as a generalized (parallel) majority cellular automaton, adapting proof techniques from discrete dynamical systems.

摘要

在本文中,我们为一种名为主动掩码(Active Masks)的基于迭代投票的图像分割算法的收敛性提供了严格证明。主动掩码(AM)旨在解决从荧光显微镜图像中描绘细胞点状模式这一具有挑战性的任务。AM的每次迭代都由一个线性卷积和一个非线性阈值化组成;在我们的案例中,这个过程的特别之处在于存在加法项,当有先验信息时,这些加法项的作用是“扭曲”投票。在实际应用中,AM算法总是收敛到一个不动点。我们对AM的行为进行了严格研究,并给出了这种收敛性的证明。关键思想是将AM表述为一个广义(并行)多数细胞自动机,并采用离散动力系统的证明技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c19d/3439218/ba9dd32722e1/nihms400348f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验