Suppr超能文献

电化学嵌锂过程中晶体硅各向异性体积膨胀:原子级原理。

Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion: an atomic level rationale.

机构信息

Division of Materials Science, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea.

出版信息

Nano Lett. 2012 Oct 10;12(10):5342-7. doi: 10.1021/nl3027197. Epub 2012 Sep 20.

Abstract

The volume expansion of silicon is the most important feature for electrochemical operations of high capacity Si anodes in lithium ion batteries. Recently, the unexpected anisotropic volume expansion of Si during lithiation has been experimentally observed, but its atomic-level origin is still unclear. By employing first-principles molecular dynamics simulations, herein, we report that the interfacial energy at the phase boundary of amorphous Li(x)Si/crystalline Si plays a very critical role in lithium diffusion and thus volume expansion. While the interface formation turns out to be favorable at x = 3.4 for all of the (100), (110), and (111) orientations, the interfacial energy for the (110) interface is the smallest, which is indeed linked to the preferential volume expansion along the <110> direction because the preferred (110) interface would promote lithiation behind the interface. Utilizing the structural characteristic of the Si(110) surface, local Li density at the (110) interface is especially high reaching Li(5.5)Si. Our atomic-level calculations enlighten the importance of the interfacial energy in the volume expansion of Si and offer an explanation for the previously unsolved perspective.

摘要

硅的体积膨胀是锂离子电池中高容量硅负极电化学操作的最重要特征。最近,实验观察到硅在锂化过程中出乎意料的各向异性体积膨胀,但它的原子级起源仍不清楚。通过采用第一性原理分子动力学模拟,本文报告称非晶态 Li(x)Si/晶态 Si 相界处的界面能在锂离子扩散和体积膨胀中起着非常关键的作用。虽然对于所有(100)、(110)和(111)取向,在 x = 3.4 时界面形成都是有利的,但(110)界面的界面能最小,这确实与沿<110>方向的优先体积膨胀有关,因为优先的(110)界面会促进界面后的锂化。利用 Si(110)表面的结构特征,(110)界面处的局部 Li 密度特别高,达到 Li(5.5)Si。我们的原子级计算阐明了界面能在硅体积膨胀中的重要性,并为以前未解决的观点提供了解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验