Suppr超能文献

在镰刀菌属中发现了毛蕊花苷脱甲基酶(PDA)的起源。

Origin of pisatin demethylase (PDA) in the genus Fusarium.

机构信息

School of Plant Sciences, College of Agriculture, University of Arizona, Tucson, AZ 85721, USA.

出版信息

Fungal Genet Biol. 2012 Nov;49(11):933-42. doi: 10.1016/j.fgb.2012.08.007. Epub 2012 Sep 7.

Abstract

Host specificity of plant pathogens can be dictated by genes that enable pathogens to circumvent host defenses. Upon recognition of a pathogen, plants initiate defense responses that can include the production of antimicrobial compounds such as phytoalexins. The pea pathogen Nectria haematococca mating population VI (MPVI) is a filamentous ascomycete that contains a cluster of genes known as the pea pathogenicity (PEP) cluster in which the pisatin demethylase (PDA) gene resides. The PDA gene product is responsible for the detoxification of the phytoalexin pisatin, which is produced by the pea plant (Pisum sativum L.). This detoxification activity allows the pathogen to evade the phytoalexin defense mechanism. It has been proposed that the evolution of PDA and the PEP cluster reflects horizontal gene transfer (HGT). Previous observations consistent with this hypothesis include the location of the PEP cluster and PDA gene on a dispensable portion of the genome (a supernumerary chromosome), a phylogenetically discontinuous distribution of the cluster among closely related species, and a bias in G+C content and codon usage compared to other regions of the genome. In this study we compared the phylogenetic history of PDA, beta-tubulin, and translation elongation factor 1-alpha in three closely related fungi (Nectria haematococca, Fusarium oxysporum, and Neocosmospora species) to formally evaluate hypotheses regarding the origin and evolution of PDA. Our results, coupled with previous work, robustly demonstrate discordance between the gene genealogy of PDA and the organismal phylogeny of these species, and illustrate how HGT of pathogenicity genes can contribute to the expansion of host specificity in plant-pathogenic fungi.

摘要

植物病原菌的宿主特异性可以由使病原菌能够规避宿主防御的基因决定。在识别病原菌后,植物会启动防御反应,包括产生抗菌化合物,如植物抗毒素。豌豆病原菌 Nectria haematococca 交配群体 VI (MPVI) 是一种丝状子囊菌,其中包含一个被称为豌豆致病性 (PEP) 簇的基因簇,其中包含 pisatin 脱甲基酶 (PDA) 基因。PDA 基因产物负责豌豆植物 (Pisum sativum L.) 产生的植物抗毒素 pisatin 的解毒。这种解毒活性使病原体能够逃避植物抗毒素防御机制。有人提出,PDA 和 PEP 簇的进化反映了水平基因转移 (HGT)。支持这一假设的先前观察结果包括 PEP 簇和 PDA 基因在基因组的可丢弃部分(一个多余染色体)上的位置、该簇在亲缘关系密切的物种之间的系统发育不连续分布,以及与基因组其他区域相比,G+C 含量和密码子使用的偏向性。在这项研究中,我们比较了三个亲缘关系密切的真菌(Nectria haematococca、Fusarium oxysporum 和 Neocosmospora 种)中的 PDA、β-微管蛋白和翻译延伸因子 1-α的系统发育历史,以正式评估有关 PDA 起源和进化的假设。我们的研究结果与之前的研究结果相结合,有力地证明了 PDA 的基因系统发育与这些物种的生物体系统发育之间的不一致,并说明了致病性基因的 HGT 如何有助于植物病原菌真菌宿主特异性的扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验