Suppr超能文献

应用近红外光谱技术预测大西洋鲑鱼中的微生物数量。

Use of near infrared spectroscopy to predict microbial numbers on Atlantic salmon.

机构信息

Australian Seafood Cooperative Research Centre, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia.

出版信息

Food Microbiol. 2012 Dec;32(2):431-6. doi: 10.1016/j.fm.2012.07.009. Epub 2012 Jul 25.

Abstract

The potential of a near infrared spectroscopy (NIR) method to detect as well as predict microbial spoilage on Atlantic salmon (Salmo salar) was investigated. Principal component analysis (PCA) of the NIR spectra showed clear separation between the fresh salmon fillets and those stored for nine days at 4°C indicating that NIR could detect spoilage. A partial least squares regression (PLS) prediction model for total aerobic plate counts after nine days was established using the NIR spectra collected when the fish was fresh to predict the number of bacteria that would be present nine days later. The calibration equation was good (R(2) = 0.95 and RMSE = 0.12 log cfu/g) although the error of the validation curve was larger (R(2) = 0.64 and RMSE = 0.32 log cfu/g). These results indicate that with further model development, it may be possible to use NIR to predict bacterial numbers, and hence shelf-life, in Atlantic salmon and other seafood.

摘要

研究了近红外光谱(NIR)方法在检测和预测大西洋鲑鱼(Salmo salar)微生物腐败方面的潜力。NIR 光谱的主成分分析(PCA)表明,新鲜的三文鱼鱼片和在 4°C 下储存九天的鱼片之间有明显的分离,表明 NIR 可以检测到腐败。使用新鲜鱼时收集的 NIR 光谱建立了一个用于预测九天后总需氧平板计数的偏最小二乘回归(PLS)预测模型,以预测九天后将存在的细菌数量。校准方程很好(R²=0.95,RMSE=0.12 log cfu/g),尽管验证曲线的误差更大(R²=0.64,RMSE=0.32 log cfu/g)。这些结果表明,通过进一步的模型开发,可能可以使用 NIR 来预测大西洋鲑鱼和其他海鲜中的细菌数量,从而预测保质期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验