Suppr超能文献

使用催化剂的定量象限图表示来预测铜催化烯烃环丙烷化的对映选择性。

Predicting the enantioselectivity of the copper-catalysed cyclopropanation of alkenes by using quantitative quadrant-diagram representations of the catalysts.

机构信息

Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Campus Sescelades, Tarragona, Spain.

出版信息

Chemistry. 2012 Oct 29;18(44):14026-36. doi: 10.1002/chem.201201135. Epub 2012 Sep 17.

Abstract

We present a new methodology to predict the enantioselectivity of asymmetric catalysis based on quantitative quadrant-diagram representations of the catalysts and quantitative structure-selectivity relationship (QSSR) modelling. To account for quadrant occupation, we used two types of molecular steric descriptors: the Taft-Charton steric parameter (ν(Charton)) and the distance-weighted volume (V(W) ). By assigning the value of the steric descriptors to each of the positions of the quadrant diagram, we generated the independent variables to build the multidimensional QSSR models. The methodology was applied to predict the enantioselectivity in the cyclopropanation of styrene catalysed by copper complexes. The dataset comprised 30 chiral ligands belonging to four different oxazoline-based ligand families: bis- (Box), azabis- (AzaBox), quinolinyl- (Quinox) and pyridyl-oxazoline (Pyox). In the first-order approximation, we generated QSSR models with good predictive ability (r(2) =0.89 and q(2) =0.88). The derived stereochemical model indicated that placing very large groups at two diagonal quadrants and leaving free the other two might be enough to obtain an enantioselective catalyst. Fitting the data to a higher-order polynomial, which included crossterms between the descriptors of the quadrants, resulted in an improvement of the predicting ability of the QSSR model (r(2) =0.96 and q(2) =0.93). This suggests that the relationship between the steric hindrance and the enantioselectivity is non-linear, and that bulky substituents in diagonal quadrants operate synergistically. We believe that the quantitative quadrant-diagram-based QSSR modelling is a further conceptual tool that can be used to predict the selectivity of chiral catalysts and other aspects of catalytic performance.

摘要

我们提出了一种新的方法,基于催化剂的定量象限图表示和定量构效关系(QSSR)建模来预测不对称催化的对映选择性。为了说明象限占据,我们使用了两种类型的分子空间位阻描述符:Taft-Charton 空间位阻参数(ν(Charton))和距离加权体积(V(W))。通过将空间位阻描述符的值分配给象限图的每个位置,我们生成了用于构建多维 QSSR 模型的自变量。该方法应用于预测铜配合物催化的苯乙烯环丙烷化的对映选择性。数据集包括属于四种不同恶唑啉基配体家族的 30 种手性配体:双(Box)、双(AzaBox)、喹啉基(Quinox)和吡啶基恶唑啉(Pyox)。在一阶近似中,我们生成了具有良好预测能力的 QSSR 模型(r(2)=0.89 和 q(2)=0.88)。衍生的立体化学模型表明,在两个对角象限中放置非常大的基团,而让另外两个象限自由,可能足以获得对映选择性催化剂。将数据拟合到包括象限描述符之间的交叉项的更高阶多项式中,导致 QSSR 模型的预测能力得到提高(r(2)=0.96 和 q(2)=0.93)。这表明立体位阻与对映选择性之间的关系是非线性的,并且对角象限中大体积取代基协同作用。我们相信,基于定量象限图的 QSSR 建模是一种进一步的概念工具,可以用于预测手性催化剂的选择性和催化性能的其他方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验