Suppr超能文献

模型参数估计和不确定性分析:ISPOR-SMDM 建模良好实践工作组第 6 工作组的报告。

Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group-6.

机构信息

Institute of Health & Wellbeing, University of Glasgow, Glasgow, UK (AHB, EALF)

Harvard School of Public Health, Boston, Massachusetts, USA (MCW)

出版信息

Med Decis Making. 2012 Sep-Oct;32(5):722-32. doi: 10.1177/0272989X12458348.

Abstract

A model's purpose is to inform medical decisions and health care resource allocation. Modelers employ quantitative methods to structure the clinical, epidemiological, and economic evidence base and gain qualitative insight to assist decision makers in making better decisions. From a policy perspective, the value of a model-based analysis lies not simply in its ability to generate a precise point estimate for a specific outcome but also in the systematic examination and responsible reporting of uncertainty surrounding this outcome and the ultimate decision being addressed. Different concepts relating to uncertainty in decision modeling are explored. Stochastic (first-order) uncertainty is distinguished from both parameter (second-order) uncertainty and from heterogeneity, with structural uncertainty relating to the model itself forming another level of uncertainty to consider. The article argues that the estimation of point estimates and uncertainty in parameters is part of a single process and explores the link between parameter uncertainty through to decision uncertainty and the relationship to value-of-information analysis. The article also makes extensive recommendations around the reporting of uncertainty, both in terms of deterministic sensitivity analysis techniques and probabilistic methods. Expected value of perfect information is argued to be the most appropriate presentational technique, alongside cost-effectiveness acceptability curves, for representing decision uncertainty from probabilistic analysis.

摘要

模型的目的是为医疗决策和医疗资源配置提供信息。建模人员采用定量方法构建临床、流行病学和经济证据基础,并获得定性洞察力,以帮助决策者做出更好的决策。从政策角度来看,基于模型的分析的价值不仅在于其为特定结果生成精确点估计的能力,还在于对围绕该结果和最终决策的不确定性进行系统检查和负责任的报告。本文探讨了与决策建模中的不确定性相关的不同概念。随机(一阶)不确定性与参数(二阶)不确定性以及异质性区分开来,与模型本身相关的结构不确定性形成了另一个需要考虑的不确定性层次。本文认为,点估计和参数不确定性的估计是一个单一过程的一部分,并探讨了参数不确定性通过决策不确定性到信息价值分析之间的联系。本文还围绕不确定性报告提出了广泛的建议,包括确定性敏感性分析技术和概率方法。有人认为,预期完美信息值是表示概率分析中决策不确定性的最合适的展示技术,以及成本效益可接受性曲线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验