Suppr超能文献

采用 CdS 和 ZnS 进行内延纳米结构和价带偏移工程来提高 p 型 PbS 的热电性能。

Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS.

机构信息

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

J Am Chem Soc. 2012 Oct 3;134(39):16327-36. doi: 10.1021/ja306527n. Epub 2012 Sep 19.

Abstract

We have investigated in detail the effect of CdS and ZnS as second phases on the thermoelectric properties of p-type PbS. We report a ZT of ~1.3 at 923 K for 2.5 at.% Na-doped p-type PbS with endotaxially nanostructured 3.0 at.% CdS. We attribute the high ZT to the combination of broad-based phonon scattering on multiple length scales to reduce (lattice) thermal conductivity and favorable charge transport through coherent interfaces between the PbS matrix and metal sulfide nanophase precipitates, which maintains the requisite high carrier conductivity and the associated power factor. Similar to large ionically bonded metal sulfides (ZnS, CaS, and SrS), the covalently bonded CdS can also effectively reduce the lattice thermal conductivity in p-type PbS. The presence of ubiquitous nanostructuring was confirmed by transmission electron microscopy. Valence and conduction band energy levels of the NaCl-type metal sulfides, MS (M = Pb, Cd, Zn, Ca, and Sr) were calculated from density functional theory to gain insight into the band alignment between PbS and the second phases in these materials. The hole transport is controlled by band offset minimization through the alignment of valence bands between the host PbS and the embedded second phases, MS (M = Cd, Zn, Ca, and Sr). The smallest valence band offset of about 0.13 eV at 0 K was found between PbS and CdS which is diminished further by thermal band broadening at elevated temperature. This allows carrier transport between the endotaxially aligned components (i.e., matrix and nanostructure), thus minimizing significant deterioration of the hole mobility and power factor. We conclude the thermoelectric performance of the PbS system and, by extension, other systems can be enhanced by means of a closely coupled phonon-blocking/electron-transmitting approach through embedding endotaxially nanostructured second phases.

摘要

我们详细研究了 CdS 和 ZnS 作为第二相对 p 型 PbS 热电性能的影响。我们报道了在 923 K 时,掺钠 2.5at.%的 p 型 PbS 的 ZT 值约为 1.3,其中含有内伸纳米结构的 3.0at.% CdS。我们将高 ZT 值归因于多个长度尺度上的宽带声子散射,以降低(晶格)热导率,以及通过 PbS 基体与金属硫化物纳米相沉淀物之间的相干界面实现有利的电荷输运,从而保持必要的高载流子电导率和相关的功率因子。类似于大离子键合的金属硫化物(ZnS、CaS 和 SrS),共价键合的 CdS 也可以有效地降低 p 型 PbS 的晶格热导率。通过透射电子显微镜证实了普遍存在的纳米结构。根据密度泛函理论计算了 NaCl 型金属硫化物 MS(M=Pb、Cd、Zn、Ca 和 Sr)的价带和导带能级,以深入了解 PbS 与这些材料中第二相之间的能带排列。空穴输运受能带偏移最小化的控制,这是通过在宿主 PbS 和嵌入的第二相 MS(M=Cd、Zn、Ca 和 Sr)之间的价带对齐来实现的。在 0 K 时,发现 PbS 和 CdS 之间的价带偏移最小,约为 0.13 eV,在高温时进一步通过热带展宽减小。这允许载流子在 endotaxially 排列的组件(即基体和纳米结构)之间传输,从而最小化空穴迁移率和功率因子的显著恶化。我们得出结论,通过嵌入 endotaxially 纳米结构的第二相,采用紧密耦合的声子阻挡/电子传输方法,可以提高 PbS 体系的热电性能,并且可以扩展到其他体系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验