Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
J Am Chem Soc. 2012 May 9;134(18):7902-12. doi: 10.1021/ja301772w. Epub 2012 Apr 27.
We report high thermoelectric performance in nanostructured p-type PbS, a material consisting of highly earth abundant and inexpensive elements. The high level of Na doping switched intrinsic n-type PbS to p-type and substantially raised the power factor maximum for pure PbS to ~9.0 μW cm(-1) K(-2) at >723 K using 2.5 at. % Na as the hole dopant. Contrary to that of PbTe, no enhancement in the Hall coefficient occurs at high temperature for heavily doped p-type PbS, indicating a single band model and no heavy hole band. We also report that the lattice thermal conductivity of PbS can be greatly reduced by adding SrS or CaS, which form a combination of a nanostructured/solid solution material as determined by transmission electron microscopy. We find that both nanoscale precipitates and point defects play an important role in reducing the lattice thermal conductivity, but the contribution from nanoscale precipitates of SrS is greater than that of CaS, whereas the contribution from point defects in the case of CaS is greater than that of SrS. Theoretical calculations of the lattice thermal conductivity based on the modified Callaway model reveal that both nanostructures and point defects (solid solution) effectively scatter phonons in this system. The lattice thermal conductivity at 723 K can be reduced by ~50% by introducing up to 4.0 at. % of either SrS or CaS. As a consequence, ZT values as high as 1.22 and 1.12 at 923 K can be achieved for nominal Pb(0.975)Na(0.025)S with 3.0 at. % SrS and CaS, respectively. No deterioration was observed after a 15 d annealing treatment of the samples, indicating the excellent thermal stability for these high performance thermoelectrics. The promising thermoelectric properties of nanostructured PbS point to a robust low cost alternative to other high performance thermoelectric materials.
我们报告了在纳米结构 p 型 PbS 中实现的高热电性能,该材料由丰富且廉价的元素组成。高浓度的 Na 掺杂将本征 n 型 PbS 转变为 p 型,并将纯 PbS 的最大功率因子极大地提高至 ~9.0 μW cm(-1) K(-2),在>723 K 时使用 2.5 at.%的 Na 作为空穴掺杂剂。与 PbTe 不同,对于高掺杂的 p 型 PbS,在高温下霍尔系数并没有增强,表明其为单能带模型,没有重空穴带。我们还报告称,通过添加 SrS 或 CaS,PbS 的晶格热导率可以大大降低,这是由透射电子显微镜确定的纳米结构/固溶体材料的组合。我们发现,纳米级沉淀物和点缺陷在降低晶格热导率方面都起着重要作用,但 SrS 纳米级沉淀物的贡献大于 CaS,而 CaS 中点缺陷的贡献大于 SrS。基于修正的 Callaway 模型的晶格热导率理论计算表明,在该体系中,纳米结构和点缺陷(固溶体)都能有效地散射声子。通过引入高达 4.0 at.%的 SrS 或 CaS,在 723 K 时的晶格热导率可以降低约 50%。因此,对于名义组成 Pb(0.975)Na(0.025)S,分别添加 3.0 at.% SrS 和 CaS 可以实现高达 923 K 时的 ZT 值 1.22 和 1.12。对样品进行 15 d 的退火处理后,没有观察到性能恶化,表明这些高性能热电材料具有优异的热稳定性。纳米结构 PbS 的有前途的热电性能为其他高性能热电材料提供了一种稳健且低成本的替代方案。