Suppr超能文献

利用“可调谐”活性位点相互作用扩展蛋白质法尼基转移酶特异性:生物工程化异戊二烯化途径的开发

Expansion of protein farnesyltransferase specificity using "tunable" active site interactions: development of bioengineered prenylation pathways.

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

J Biol Chem. 2012 Nov 2;287(45):38090-100. doi: 10.1074/jbc.M112.404954. Epub 2012 Sep 19.

Abstract

Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be "tuned" using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein.

摘要

翻译后修饰在调节蛋白质结构和功能方面发挥着重要作用。蛋白质法尼基转移酶(FTase)催化多达数百种细胞蛋白质的生物学相关脂化反应。FTase的定点诱变与肽选择性测量相结合表明,分子识别是由多种相互作用共同决定的。对这些相互作用进行靶向随机化产生了具有改变的、在某些情况下具有生物正交选择性的FTase变体。我们证明,可以使用少量在野生型酶中区分非底物时起关键作用的活性位点接触来“调整”FTase的特异性。这种可调节的选择性在体内也能发挥作用,FTase变体能够在细胞内创建具有改变的底物选择性的生物工程平行异戊二烯化途径。工程化的FTase变体为探究异戊二烯化途径酶的选择性以及异戊二烯化途径修饰对蛋白质细胞功能的影响提供了一条新途径。

相似文献

5
Protein farnesyltransferase.
Curr Opin Struct Biol. 1997 Dec;7(6):873-80. doi: 10.1016/s0959-440x(97)80160-1.
6
Efficient farnesylation of an extended C-terminal C() sequence motif expands the scope of the prenylated proteome.
J Biol Chem. 2018 Feb 23;293(8):2770-2785. doi: 10.1074/jbc.M117.805770. Epub 2017 Dec 27.
8
Conversion of protein farnesyltransferase to a geranylgeranyltransferase.
Biochemistry. 2006 Aug 15;45(32):9746-55. doi: 10.1021/bi060295e.
9
Interplay of isoprenoid and peptide substrate specificity in protein farnesyltransferase.
Biochemistry. 2005 Aug 23;44(33):11214-23. doi: 10.1021/bi050725l.
10
The chaperone SmgGDS-607 has a dual role, both activating and inhibiting farnesylation of small GTPases.
J Biol Chem. 2019 Aug 2;294(31):11793-11804. doi: 10.1074/jbc.RA119.007438. Epub 2019 Jun 13.

引用本文的文献

2
MALDI-MS Analysis of Peptide Libraries Expands the Scope of Substrates for Farnesyltransferase.
Int J Mol Sci. 2021 Nov 7;22(21):12042. doi: 10.3390/ijms222112042.
3
Protein Farnesyltransferase Catalyzes Unanticipated Farnesylation and Geranylgeranylation of Shortened Target Sequences.
Biochemistry. 2020 Mar 24;59(11):1149-1162. doi: 10.1021/acs.biochem.0c00081. Epub 2020 Mar 10.
4
Recent progress in enzymatic protein labelling techniques and their applications.
Chem Soc Rev. 2018 Dec 21;47(24):9106-9136. doi: 10.1039/c8cs00537k. Epub 2018 Sep 27.
5
Protein Isoprenylation in Yeast Targets COOH-Terminal Sequences Not Adhering to the CaaX Consensus.
Genetics. 2018 Dec;210(4):1301-1316. doi: 10.1534/genetics.118.301454. Epub 2018 Sep 26.
6
Efficient farnesylation of an extended C-terminal C() sequence motif expands the scope of the prenylated proteome.
J Biol Chem. 2018 Feb 23;293(8):2770-2785. doi: 10.1074/jbc.M117.805770. Epub 2017 Dec 27.
7
Towards the systematic mapping and engineering of the protein prenylation machinery in Saccharomyces cerevisiae.
PLoS One. 2015 Mar 13;10(3):e0120716. doi: 10.1371/journal.pone.0120716. eCollection 2015.
8
Engineering protein farnesyltransferase for enzymatic protein labeling applications.
Bioconjug Chem. 2014 Jul 16;25(7):1203-12. doi: 10.1021/bc500240p. Epub 2014 Jul 2.

本文引用的文献

1
Targeting protein prenylation for cancer therapy.
Nat Rev Cancer. 2011 Oct 24;11(11):775-91. doi: 10.1038/nrc3151.
2
Identification of a novel class of farnesylation targets by structure-based modeling of binding specificity.
PLoS Comput Biol. 2011 Oct;7(10):e1002170. doi: 10.1371/journal.pcbi.1002170. Epub 2011 Oct 6.
3
Multispecific recognition: mechanism, evolution, and design.
Biochemistry. 2011 Feb 8;50(5):602-11. doi: 10.1021/bi101563v. Epub 2011 Jan 13.
4
Engineering thrombin for selective specificity toward protein C and PAR1.
J Biol Chem. 2010 Jun 18;285(25):19145-52. doi: 10.1074/jbc.M110.119875. Epub 2010 Apr 19.
5
Enzyme promiscuity: a mechanistic and evolutionary perspective.
Annu Rev Biochem. 2010;79:471-505. doi: 10.1146/annurev-biochem-030409-143718.
6
A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with Western blotting.
Mol Cell Proteomics. 2010 Apr;9(4):742-51. doi: 10.1074/mcp.M900597-MCP200. Epub 2010 Jan 26.
7
Synthesis and screening of a CaaL peptide library versus FTase reveals a surprising number of substrates.
Bioorg Med Chem Lett. 2010 Jan 15;20(2):767-70. doi: 10.1016/j.bmcl.2009.11.011. Epub 2009 Nov 12.
9
Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling.
Oncogene. 2010 Jan 21;29(3):380-91. doi: 10.1038/onc.2009.336. Epub 2009 Oct 19.
10
Analysis of the eukaryotic prenylome by isoprenoid affinity tagging.
Nat Chem Biol. 2009 Apr;5(4):227-35. doi: 10.1038/nchembio.149. Epub 2009 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验