Suppr超能文献

跨膜螺旋疏水错配反应的决定因素。

The determinants of hydrophobic mismatch response for transmembrane helices.

作者信息

de Jesus Armando J, Allen Toby W

机构信息

Department of Chemistry, University of California, Davis, USA.

出版信息

Biochim Biophys Acta. 2013 Feb;1828(2):851-63. doi: 10.1016/j.bbamem.2012.09.012. Epub 2012 Sep 17.

Abstract

Hydrophobic mismatch arises from a difference in the hydrophobic thickness of a lipid membrane and a transmembrane protein segment, and is thought to play an important role in the folding, stability and function of membrane proteins. We have investigated the possible adaptations that lipid bilayers and transmembrane α-helices undergo in response to mismatch, using fully-atomistic molecular dynamics simulations totaling 1.4 μs. We have created 25 different tryptophan-alanine-leucine transmembrane α-helical peptide systems, each composed of a hydrophobic alanine-leucine stretch, flanked by 1-4 tryptophan side chains, as well as the β-helical peptide dimer, gramicidin A. Membrane responses to mismatch include changes in local bilayer thickness and lipid order, varying systematically with peptide length. Adding more flanking tryptophan side chains led to an increase in bilayer thinning for negatively mismatched peptides, though it was also associated with a spreading of the bilayer interface. Peptide tilting, bending and stretching were systematic, with tilting dominating the responses, with values of up to ~45° for the most positively mismatched peptides. Peptide responses were modulated by the number of tryptophan side chains due to their anchoring roles and distributions around the helices. Potential of mean force calculations for local membrane thickness changes, helix tilting, bending and stretching revealed that membrane deformation is the least energetically costly of all mismatch responses, except for positively mismatched peptides where helix tilting also contributes substantially. This comparison of energetic driving forces of mismatch responses allows for deeper insight into protein stability and conformational changes in lipid membranes.

摘要

疏水不匹配源于脂质膜和跨膜蛋白片段疏水厚度的差异,被认为在膜蛋白的折叠、稳定性和功能中起重要作用。我们使用总计1.4微秒的全原子分子动力学模拟,研究了脂质双层和跨膜α螺旋针对不匹配可能发生的适应性变化。我们创建了25种不同的色氨酸-丙氨酸-亮氨酸跨膜α螺旋肽系统,每个系统都由一段疏水的丙氨酸-亮氨酸延伸段组成,两侧是1至4个色氨酸侧链,以及β螺旋肽二聚体短杆菌肽A。膜对不匹配的响应包括局部双层厚度和脂质有序性的变化,随肽长度系统地变化。添加更多侧翼色氨酸侧链会导致负性不匹配肽的双层变薄增加,不过这也与双层界面的扩展有关。肽的倾斜、弯曲和拉伸是系统性的,倾斜在响应中占主导,对于最正性不匹配的肽,倾斜值高达约45°。由于色氨酸侧链的锚定作用及其在螺旋周围的分布,肽的响应受到色氨酸侧链数量的调节。对局部膜厚度变化、螺旋倾斜、弯曲和拉伸的平均力势计算表明,除了正性不匹配肽中螺旋倾斜也有很大贡献的情况外,膜变形是所有不匹配响应中能量成本最低的。这种对不匹配响应能量驱动力的比较有助于更深入地了解脂质膜中蛋白质的稳定性和构象变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验