Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., Mexico.
Infect Genet Evol. 2013 Jan;13:187-97. doi: 10.1016/j.meegid.2012.09.003. Epub 2012 Sep 18.
Escherichia coli occur as either free-living microorganisms, or within the colons of mammals and birds as pathogenic or commensal bacteria. Although the Mexican population of intestinal E. coli maintains high levels of genetic diversity, the exact mechanisms by which this occurs remain unknown. We therefore investigated the role of homologous recombination and point mutation in the genetic diversification and population structure of Mexican strains of E. coli. This was explored using a multi locus sequence typing (MLST) approach in a non-outbreak related, host-wide sample of 128 isolates. Overall, genetic diversification in this sample appears to be driven primarily by homologous recombination, and to a lesser extent, by point mutation. Since genetic diversity is hierarchically organized according to the MLST genealogy, we observed that there is not a homogeneous recombination rate, but that different rates emerge at different clustering levels such as phylogenetic group, lineage and clonal complex (CC). Moreover, we detected clear signature of substructure among the A+B1 phylogenetic group, where the majority of isolates were differentiated into four discrete lineages. Substructure pattern is revealed by the presence of several CCs associated to a particular life style and host as well as to different genetic diversification mechanisms. We propose these findings as an alternative explanation for the maintenance of the clear phylogenetic signal of this species despite the prevalence of homologous recombination. Finally, we corroborate using both phylogenetic and genetic population approaches as an effective mean to establish epidemiological surveillance tailored to the ecological specificities of each geographic region.
大肠杆菌可以作为自由生活的微生物存在,也可以作为哺乳动物和鸟类肠道中的致病性或共生细菌存在。尽管墨西哥的肠道大肠杆菌种群保持着高水平的遗传多样性,但确切的发生机制尚不清楚。因此,我们研究了同源重组和点突变在墨西哥大肠杆菌菌株的遗传多样化和种群结构中的作用。我们使用多基因座序列分型(MLST)方法,在非暴发相关的宿主广泛样本中对 128 株分离株进行了研究。总体而言,该样本中的遗传多样化似乎主要由同源重组驱动,其次是点突变。由于遗传多样性是根据 MLST 系统发育树分层组织的,我们观察到,并不是所有的重组率都是均匀的,而是在不同的聚类水平上出现了不同的重组率,如进化群、谱系和克隆复合体(CC)。此外,我们在 A+B1 进化群中检测到明显的亚结构,其中大多数分离株被分为四个离散的谱系。亚结构模式是由与特定生活方式和宿主以及不同遗传多样化机制相关的几个 CC 存在所揭示的。我们提出这些发现作为该物种尽管存在同源重组但仍保持明显的系统发育信号的一种替代解释。最后,我们使用基于遗传和种群的系统发育学方法来证实,这是一种针对每个地理区域生态特异性量身定制的流行病学监测的有效方法。