Nanotechnology on Surfaces Laboratory, Materials Science Institute of Seville (ICMS), CSIC-University of Seville, Seville, Spain.
Langmuir. 2012 Oct 23;28(42):15047-55. doi: 10.1021/la3028918. Epub 2012 Oct 8.
This article aims toward a full description of the wetting conversion from superhydrophobicity to superhydrophilicity under illumination with UV light of high-density ZnO nanorods surfaces by (i) following the evolution of the clusters and superstructures formed by the nanocarpet effect as a function of the water contact angle (WCA); (ii) characterization of the superhydrophobic and superhydrophilic states with an environmental scanning electron microscope (ESEM); and (iii) using the nanocarpet effect as a footprint of both local and apparent water contact angles. Thus, the main objective of the article is to provide a general vision of the wettability of 1D photoactive surfaces. In parallel, the nanocarpet (NC) formation by clustering of vertically aligned ZnO nanorods (NR) when water is dripped on their surface and then dried is studied for the first time by taking advantage of the possibility of tuning the surface water contact angle of the ZnO NR structure under UV preillumination. As a result, we demonstrate the feasibility of controlling the size and other morphological characteristics of the NCs. Moreover, a strong anisotropic wetting behavior, characterized by a Δθ = θ(parallel) - θ(perpendicular) = 30°, is shown on an asymmetrically aligned NC surface resulting from arrays of tilted NRs. The study of the condensation/evaporation of water on/from an as-prepared (superhydrophobic) or a preilluminated (superhydrophilic) NR surface examined by an environmental scanning electron microscope has evidenced the formation of supported water droplets with polygonal shapes in the first case and the complete filling of the inter-NR space in the latter. The long-term stability of the NC clusters has been utilized as a footprint to track the penetration depth of water within the inter-NR space in the three borderline regions of water droplets. This analysis has shown that for moderately hydrophobic surfaces (i.e., water contact angles lower than 130°) water droplets do not present a well-defined borderline trace but a spreading region where water penetrates differently with the NR interspace. The transition from a Cassie-Baxter to a modified Cassie-Baxter to finish in a Wenzel wetting state is found on these surfaces depending on the UV preillumination time and is explained with a model where water interaction with the NR units is the critical factor determining the macroscopic wetting behavior of these surfaces.
本文旨在通过以下方法全面描述在高密度 ZnO 纳米棒表面的紫外光照射下,超疏水向超亲水的润湿转换过程:(i) 跟踪纳米绒毛效应形成的纳米簇和超结构随水接触角 (WCA) 的演变;(ii) 通过环境扫描电子显微镜 (ESEM) 对超疏水和超亲水状态进行表征;(iii) 将纳米绒毛效应作为局部和表观水接触角的特征。因此,本文的主要目的是提供一维光活性表面润湿性的整体视角。同时,首次利用 ZnO NR 结构在紫外光预照射下表面水接触角可调的可能性,研究了当水滴在其表面并干燥时垂直排列的 ZnO 纳米棒 (NR) 簇的纳米绒毛 (NC) 形成。结果表明,我们能够控制 NC 的尺寸和其他形态特征。此外,在不对称排列的 NC 表面上,由于倾斜 NR 阵列,表现出强烈的各向异性润湿行为,特征为 Δθ=θ(parallel) - θ(perpendicular) = 30°。通过环境扫描电子显微镜研究在预制备(超疏水)或预照射(超亲水) NR 表面上的水凝结/蒸发,证实了在第一种情况下形成具有多边形形状的支撑水滴,而在后一种情况下则完全填充了 NR 之间的空间。NC 簇的长期稳定性被用作足迹来跟踪水在 NR 之间的空间内的穿透深度在三个水滴的边界区域。该分析表明,对于中等疏水性表面(即水接触角低于 130°),水滴没有明确的边界痕迹,而是呈现出一个扩展区域,其中水以不同的方式渗透到 NR 之间的空间。在这些表面上,发现从 Cassie-Baxter 到改进的 Cassie-Baxter,最终完成 Wenzel 润湿状态的转变,这取决于紫外预照射时间,并通过一个模型进行解释,其中水与 NR 单元的相互作用是决定这些表面宏观润湿行为的关键因素。