Kaplan Jonah, Grinstaff Mark
Department of Biomedical Engineering, Boston University.
Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University;
J Vis Exp. 2015 Aug 28(102):e53117. doi: 10.3791/53117.
Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.
超疏水材料的表面具有永久或亚稳态的非湿润状态,在许多生物医学和工业应用中备受关注。在此,我们描述了通过静电纺丝或电喷雾法,将含有可生物降解、生物相容的脂肪族聚酯(如聚己内酯和聚(丙交酯-共-乙交酯))作为主要成分,并掺杂由聚酯和硬脂酸酯改性的聚碳酸甘油酯组成的疏水共聚物,从而制备出超疏水生物材料的方法。静电纺丝或电喷雾的制备技术分别在纤维或颗粒的表面及内部提供了更高的表面粗糙度和孔隙率。使用与聚酯共混且能稳定地进行静电纺丝或电喷雾的低表面能共聚物掺杂剂,可制得这些超疏水材料。文中讨论了诸如纤维尺寸、共聚物掺杂剂组成和/或浓度等重要参数及其对润湿性的影响。这种聚合物化学与工艺工程的结合,提供了一种通用方法,可利用可扩展技术开发特定应用的材料,这可能适用于更广泛类别的聚合物,以用于各种应用。