Suppr超能文献

用于生物医学应用的超疏水聚合物材料的制备

Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.

作者信息

Kaplan Jonah, Grinstaff Mark

机构信息

Department of Biomedical Engineering, Boston University.

Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University;

出版信息

J Vis Exp. 2015 Aug 28(102):e53117. doi: 10.3791/53117.

Abstract

Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.

摘要

超疏水材料的表面具有永久或亚稳态的非湿润状态,在许多生物医学和工业应用中备受关注。在此,我们描述了通过静电纺丝或电喷雾法,将含有可生物降解、生物相容的脂肪族聚酯(如聚己内酯和聚(丙交酯-共-乙交酯))作为主要成分,并掺杂由聚酯和硬脂酸酯改性的聚碳酸甘油酯组成的疏水共聚物,从而制备出超疏水生物材料的方法。静电纺丝或电喷雾的制备技术分别在纤维或颗粒的表面及内部提供了更高的表面粗糙度和孔隙率。使用与聚酯共混且能稳定地进行静电纺丝或电喷雾的低表面能共聚物掺杂剂,可制得这些超疏水材料。文中讨论了诸如纤维尺寸、共聚物掺杂剂组成和/或浓度等重要参数及其对润湿性的影响。这种聚合物化学与工艺工程的结合,提供了一种通用方法,可利用可扩展技术开发特定应用的材料,这可能适用于更广泛类别的聚合物,以用于各种应用。

相似文献

1
Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.
J Vis Exp. 2015 Aug 28(102):e53117. doi: 10.3791/53117.
2
Imparting superhydrophobicity to biodegradable poly(lactide-co-glycolide) electrospun meshes.
Biomacromolecules. 2014 Jul 14;15(7):2548-54. doi: 10.1021/bm500410h. Epub 2014 Jun 20.
3
Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering.
Biomacromolecules. 2016 Oct 10;17(10):3172-3187. doi: 10.1021/acs.biomac.6b00820. Epub 2016 Sep 23.
4
Vegetable-oil-based polymers as future polymeric biomaterials.
Acta Biomater. 2014 Apr;10(4):1692-704. doi: 10.1016/j.actbio.2013.08.040. Epub 2013 Sep 5.
5
Nature inspired structured surfaces for biomedical applications.
Curr Med Chem. 2011;18(22):3367-75. doi: 10.2174/092986711796504673.
8
Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods.
Bioinspir Biomim. 2008 Sep;3(3):034003. doi: 10.1088/1748-3182/3/3/034003. Epub 2008 Jul 15.
9
Bio-inspired electrospun micro/nanofibers with special wettability.
J Nanosci Nanotechnol. 2014 Jul;14(7):4781-98. doi: 10.1166/jnn.2014.8841.
10
Micro-/nanometer rough structure of a superhydrophobic biodegradable coating by electrospraying for initial anti-bioadhesion.
Adv Healthc Mater. 2013 Oct;2(10):1314-21. doi: 10.1002/adhm.201300021. Epub 2013 Apr 2.

引用本文的文献

2
Superhydrophobic materials for biomedical applications.
Biomaterials. 2016 Oct;104:87-103. doi: 10.1016/j.biomaterials.2016.06.050. Epub 2016 Jul 9.

本文引用的文献

1
A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes.
Adv Funct Mater. 2013 Aug 7;23(29):3628-3637. doi: 10.1002/adfm.201203111.
3
Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization.
ACS Appl Mater Interfaces. 2014 Jul 9;6(13):10153-61. doi: 10.1021/am501371b. Epub 2014 Jun 27.
4
Imparting superhydrophobicity to biodegradable poly(lactide-co-glycolide) electrospun meshes.
Biomacromolecules. 2014 Jul 14;15(7):2548-54. doi: 10.1021/bm500410h. Epub 2014 Jun 20.
7
Superhydrophobic polymer multilayers that promote the extended, long-term release of embedded water-soluble agents.
Adv Mater. 2013 Nov 26;25(44):6405-9. doi: 10.1002/adma.201302561. Epub 2013 Aug 25.
9
Triggered drug release from superhydrophobic meshes using high-intensity focused ultrasound.
Adv Healthc Mater. 2013 Sep;2(9):1204-8. doi: 10.1002/adhm.201200381. Epub 2013 Apr 17.
10
Hydrophobic meshes for oil spill recovery devices.
ACS Appl Mater Interfaces. 2013 Feb;5(3):774-81. doi: 10.1021/am302338x. Epub 2013 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验