Department of Macromolecular Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
J Phys Chem B. 2012 Oct 18;116(41):12605-13. doi: 10.1021/jp308037n. Epub 2012 Oct 8.
The dielectric behaviors of typical benzene monosubstitutes, bromobenzene (Br-Bz) and benzonitrile (NC-Bz), were investigated up to 3 THz in the pure liquid state over a temperature range from 10 to 60 °C to understand differences in molecular motions of these simple, planar molecules bearing rather different electric dipole moments: 1.72 and 4.48 D for Br-Bz and NC-Bz in gaseous state, respectively. Temperature dependence of spin-lattice relaxation time (T(1)) for (13)C NMR and viscosities for these liquids were also determined to obtain information for molecular motions. Moreover, depolarized Rayleigh scattering (DRS) experiments were carried out for both liquids at 20 °C to determine frequency dependencies of optical susceptibilities up to 8 THz directly relating to rotational motions of their molecular planes. Most Br-Bz molecules rotate freely over a temperature range examined, showing a Kirkwood correlation factor close to g(K) ∼ 1.0 at dielectric Debye-type relaxation times (ca. 18 ps at 20 °C) essentially identical to microscopic (dielectric) relaxation times evaluated from T(1)(13)C NMR data. A small amount of Br-Bz molecules forms dimeric intermolecular associations in an antiparallel configuration of dipole moments. On the other hand, NC-Bz molecules form stable dimers in the antiparallel dipole configuration at a population much higher than that of Br-Bz because of a markedly greater dipole moment than that of Br-Bz. A major dielectric relaxation mechanism for NC-Bz found at ca. 70 ps at 20 °C results from the dissociation process of dimers with a lifetime longer than a rotational relaxation time, observable as a minor dielectric relaxation mechanism at ca. 12 ps at 20 °C, of individual monomeric NC-Bz molecules without the formation of dimers. The formation of stable dimers in an antiparallel configuration is responsible for the observed small g(K) values, ca. 0.5, and disagreement between major (or minor) dielectric relaxation times and microscopic dielectric relaxation times over the entire temperature range examined.
研究了典型苯单取代物溴苯(Br-Bz)和苯甲腈(NC-Bz)在纯液态下的介电行为,温度范围为 10 至 60°C,频率范围为 0.1 至 3 THz,以了解这些具有相当不同电偶极矩的简单平面分子的分子运动差异:Br-Bz 和 NC-Bz 在气态下的电偶极矩分别为 1.72 和 4.48 D。还确定了这些液体的(13)C NMR 自旋晶格弛豫时间(T(1))和粘度随温度的变化,以获取分子运动信息。此外,还在 20°C 下对两种液体进行了非偏振瑞利散射(DRS)实验,直接测量其分子平面旋转运动的光学介电常数在 0.1 至 8 THz 范围内的频率依赖性。在研究的温度范围内,大多数 Br-Bz 分子自由旋转,在介电德拜型弛豫时间(约 20°C 时为 18 ps)处接近 g(K) ∼ 1.0 的 Kirkwood 相关因子,与从 T(1)(13)C NMR 数据评估的微观(介电)弛豫时间基本相同。少量 Br-Bz 分子以偶极矩反平行构型形成二聚体分子间缔合。另一方面,由于 NC-Bz 的偶极矩明显大于 Br-Bz,NC-Bz 分子以反平行偶极构型形成稳定的二聚体,其浓度远高于 Br-Bz。在 20°C 时约 70 ps 处发现的 NC-Bz 的主要介电弛豫机制源于二聚体的离解过程,该过程的寿命长于旋转弛豫时间,在 20°C 时约 12 ps 处作为单体 NC-Bz 分子的次要介电弛豫机制观察到,该分子没有形成二聚体。稳定的反平行二聚体的形成是导致观察到的小 g(K)值(约 0.5)和主要(或次要)介电弛豫时间与整个温度范围内的微观介电弛豫时间之间的差异的原因。