Suppr超能文献

钯催化的α-亚氨基酯的脱羧烯丙基化反应的机理:通过游离羧酸根离子脱羧。

Mechanism of the Pd-catalyzed decarboxylative allylation of α-imino esters: decarboxylation via free carboxylate ion.

机构信息

Department of Applied Chemistry, China Agricultural University, Beijing 100193, PR China.

出版信息

Chemistry. 2012 Nov 5;18(45):14527-38. doi: 10.1002/chem.201201425. Epub 2012 Sep 23.

Abstract

The Pd-catalyzed decarboxylative allylation of α-(diphenylmethylene)imino esters (1) or allyl diphenylglycinate imines (2) is an efficient method to construct new C(sp(3))-C(sp(3)) bonds. The detailed mechanism of this reaction was studied by theoretical calculations [ONIOM(B3LYP/LANL2DZ+p:PM6)] combined with experimental observations. The overall catalytic cycle was found to consist of three steps: oxidative addition, decarboxylation, and reductive allylation. The oxidative addition of 1 to [(dba)Pd(PPh(3))(2)] (dba = dibenzylideneacetone) produces an allylpalladium cation and a carboxylate anion with a low activation barrier of +9.1 kcal mol(-1). The following rate-determining decarboxylation proceeds via a solvent-exposed α-imino carboxylate anion rather than an O-ligated allylpalladium carboxylate with an activation barrier of +22.7 kcal mol(-1). The 2-azaallyl anion generated by this decarboxylation attacks the face of the allyl ligand opposite to the Pd center in an outer-sphere process to produce major product 3, with a lower activation barrier than that of the minor product 4. A positive linear Hammett correlation [ρ = 1.10 for the PPh(3) ligand] with the observed regioselectivity (3 versus 4) supports an outer-sphere pathway for the allylation step. When Pd combined with the bis(diphenylphosphino)butane (dppb) ligand is employed as a catalyst, the decarboxylation still proceeds via the free carboxylate anion without direct assistance of the cationic Pd center. Consistent with experimental observations, electron-withdrawing substituents on 2 were calculated to have lower activation barriers for decarboxylation and, thus, accelerate the overall reaction rates.

摘要

钯催化的 α-(二苯基亚甲基)亚氨基酯(1)或烯丙基二苯甘氨酰亚胺(2)的脱羧烯丙基化反应是构建新的 C(sp(3))-C(sp(3))键的有效方法。通过理论计算[ONIOM(B3LYP/LANL2DZ+p:PM6)]结合实验观察研究了该反应的详细机理。发现整个催化循环由三个步骤组成:氧化加成、脱羧和还原烯丙基化。1 与[(dba)Pd(PPh(3))(2)](dba=二苄叉丙酮)的氧化加成生成烯丙基钯阳离子和羧酸根阴离子,其活化能垒为+9.1 kcal mol(-1)。随后的速控脱羧反应通过溶剂暴露的α-亚氨基羧酸根阴离子进行,而不是通过与 O 配位的烯丙基钯羧酸根阴离子进行,其活化能垒为+22.7 kcal mol(-1)。此脱羧反应生成的 2-氮杂烯丙基阴离子在外层过程中攻击与 Pd 中心相对的烯丙基配体的面,以生成主要产物 3,其活化能垒低于次要产物 4。观察到的区域选择性(3 与 4)与正线性哈米特相关[ρ=1.10 对于 PPh(3)配体]支持烯丙基化步骤的外层过程。当 Pd 与双(二苯基膦)丁烷(dppb)配体结合作为催化剂时,脱羧反应仍然通过游离羧酸根阴离子进行,而没有阳离子 Pd 中心的直接协助。与实验观察一致,2 上的吸电子取代基被计算为具有较低的脱羧活化能垒,从而加速了整体反应速率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验