SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
Phys Rev Lett. 2012 May 18;108(20):200502. doi: 10.1103/PhysRevLett.108.200502.
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ϵ blindness for UBQC, in analogy to the concept of ϵ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ϵ-blind UBQC for any ϵ>0, even if the channel between the client and the server is arbitrarily lossy.
通用盲量子计算(UBQC)协议 [A. Broadbent、J. Fitzsimons 和 E. Kashefi,Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science(IEEE 计算机协会,加利福尼亚州洛斯阿尔托斯,2009 年),第 517-526 页] 允许客户端在远程服务器上执行量子计算。在理想情况下,如果客户端能够生成特定的、随机选择的单量子位态,则可以保证完美的隐私。虽然从理论角度来看,这可能构成最低可能的量子要求,但从实际角度来看,要沿着长距离完美地生成这种状态是永远无法实现的。我们引入了 UBQC 的 ϵ 盲性概念,类似于为其他加密协议开发的 ϵ 安全性概念,使我们能够在可能的不完美情况下描述协议的健壮性和安全性特性。我们还提出了一种具有弱相干脉冲的远程盲单量子位制备协议,允许客户端以委托的方式制备任意接近完美随机单量子位态的量子态。这使我们能够有效地实现任何 ϵ>0 的 ϵ 盲 UBQC,即使客户端和服务器之间的信道任意损耗。